49 research outputs found

    Primary amoebic meningoencephalitis: amoebicidal effects of clinically approved drugs against Naegleria fowleri

    Get PDF
    Here we tested the effects of clinically approved drugs targeting vital cellular receptors and biochemical pathways against Naegleria fowleri. For the first time, our findings revealed that digoxin and procyclidine showed potent amoebicidal effects as no viable trophozoites were observed (\u3e95% kill rate). In view of the devastating nature of this disease and the problems associated with chemotherapy, the present findings offer promising drug-leads for clinical practice. Drugs tested in the present study are FDA approved and should be of potential value in the management of primary amoebic meningoencephalitis

    Developing a novel ontology for cybersecurity in internet of medical things-enabled remote patient monitoring

    Get PDF
    IoT has seen remarkable growth, particularly in healthcare, leading to the rise of IoMT. IoMT integrates medical devices for real-time data analysis and transmission but faces challenges in data security and interoperability. This research identifies a significant gap in the existing literature regarding a comprehensive ontology for vulnerabilities in medical IoT devices. This paper proposes a fundamental domain ontology named MIoT (Medical Internet of Things) ontology, focusing on cybersecurity in IoMT (Internet of Medical Things), particularly in remote patient monitoring settings. This research will refer to similar-looking acronyms, IoMT and MIoT ontology. It is important to distinguish between the two. IoMT is a collection of various medical devices and their applications within the research domain. On the other hand, MIoT ontology refers to the proposed ontology that defines various concepts, roles, and individuals. MIoT ontology utilizes the knowledge engineering methodology outlined in Ontology Development 101, along with the structured life cycle, and estab- lishes semantic interoperability among medical devices to secure IoMT assets from vulnerabilities and cyberattacks. By defining key concepts and relationships, it becomes easier to understand and analyze the complex network of information within the IoMT. The MIoT ontology captures essential key terms and security-related entities for future extensions. A conceptual model is derived from the MIoT ontology and validated through a case study. Furthermore, this paper outlines a roadmap for future research, highlighting potential impacts on security automation in healthcare applications

    Data-driven prioritization and preclinical evaluation of therapeutic targets in glioblastoma

    Get PDF
    Background: Patients with glioblastoma (GBM) have a dismal prognosis, and there is an unmet need for new therapeutic options. This study aims to identify new therapeutic targets in GBM. Methods: mRNA expression data of patient-derived GBM (n = 1279) and normal brain tissue (n = 46) samples were collected from Gene Expression Omnibus and The Cancer Genome Atlas. Functional genomic mRNA profiling was applied to capture the downstream effects of genomic alterations on gene expression levels. Next, a class comparison between GBM and normal brain tissue was performed. Significantly upregulated genes in GBM were further prioritized based on (1) known interactions with antineoplastic drugs, (2) current drug development status in humans, and (3) association with biologic pathways known to be involved in GBM. Antineoplastic agents against prioritized targets were validated in vitro and in vivo. Results: We identified 712 significantly upregulated genes in GBM compared to normal brain tissue, of which 27 have a known interaction with antineoplastic agents. Seventeen of the 27 genes, including EGFR and VEGFA, have been clinically evaluated in GBM with limited efficacy. For the remaining 10 genes, RRM2, MAPK9 (JNK2, SAPK1a), and XIAP play a role in GBM development. We demonstrated for the MAPK9 inhibitor RGB-286638 a viability loss in multiple GBM cell culture models. Although no overall survival benefit was observed in vivo, there were indications that RGB-286638 may delay tumor growth. Conclusions: The MAPK9 inhibitor RGB-286638 showed promising in vitro results. Furthermore, in vivo target engagement studies and combination therapies with this compound warrant further exploration

    Preparation and evaluation of the ZnO NP-Ampicillin/Sulbactam nanoantibiotic: Optimization of formulation variables using RSM coupled GA method and antibacterial activities

    Get PDF
    Nanoparticles (NPs) possessing antibacterial activity represent an effective way of overcoming bacterial resistance. In the present work, we report a novel formulation of a nanoantibiotic formed using Ampicillin/sulbactam (Ams) and a zinc oxide nanoparticle (ZnO NP). ‘ZnO NP–Ams’ nanoantibiotic formulation is optimized using response surface methodology coupled genetic algorithm approach. The optimized formulation of nanoantibiotic (ZnO NP: 49.9 μg/mL; Ams: 33.6 μg/mL; incubation time: 27 h) demonstrated 15% enhanced activity compared to the unoptimized formulation against K. pneumoniae. The reactive oxygen species (ROS) generation was directly proportional to the interaction time of nanoantibiotic and K. pneumoniae after the initial lag phase of ~18 h as evident from 2'-7'-Dichlorodihydrofluorescein diacetate assay. A low minimum inhibitory concentration (6.25 μg/mL) of nanoantibiotic formulation reveals that even a low concentration of nanoantibiotic can prove to be effective against K. pneumoniae. The importance of nanoantibiotic formulation is also evident by the fact that the 100 μg/mL of Ams and 25 μg of ZnO NP was required individually to inhibit the growth of K. pneumonia, whereas only 6.25 μg/mL of optimized nanoantibiotic formulation (ZnO NP and Ams in the ratio of 49.9: 33.6 in μg/mL and conjugation time of 27 h) was needed for the same

    A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells

    Get PDF
    Human exposure to carcinogens occurs via a plethora of environmental sources, with 70–90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens’ adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention

    Acquired uterine vascular anomaly: Experience from a tertiary care centre in Pakistan

    No full text
    Objectives: This study aimed to retrospectively review imaging findings and the outcomes of uterine artery embolisation (UAE) in symptomatic uterine vascular anomalies (UVA). Methods: This study included a total of 15 patients with acquired UVA admitted to the Aga Khan University Hospital in Karachi, Pakistan, from 2010 to 2020. These patients were evaluated using ultrasound, computed tomography and magnetic resonance imaging, either alone or in combination. All patients had a history of dilatation and curettage or uterine instrumentation and underwent angiography and embolisation of the uterine arteries. The primary outcome post embolisation was assessed clinically and/or in combination with ultrasound. Post-procedure pregnancies were also recorded. Results: Non-invasive imaging was abnormal in all patients; however, this pre-intervention imaging was unable to accurately classify the type of vascular anomaly, except in the case of a pseudoaneurysm. Conventional angiography showed uterine artery hyperaemia in six patients, arteriovenous malformation in seven patients and pseudoaneurysm in two patients. The technical success rate was 100% and no repeat embolisation was needed. The follow-up ultrasound in 12 patients revealed a resolution of the abnormal findings, while the remaining three were found to be normal on clinical follow-up. Seven patients (46.7%) had a normal pregnancy 15.7 months after the procedure (range: 4-28 months). Conclusions: UAE is a safe and effective management option for intractable severe bleeding in patients with UVA post instrumentation and it was found that the procedure does not impair future pregnanc
    corecore