119 research outputs found

    Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea

    Get PDF
    In the present study, molecular mapping of high-resolution plant height QTLs was performed by integrating 3625 desi genome-derived GBS (genotyping-by-sequencing)-SNPs on an ultra-high resolution intra-specific chickpea genetic linkage map (dwarf/semi-dwarf desi cv. ICC12299 x tall kabuli cv. ICC8261). The identified six major genomic regions harboring six robust QTLs (11.5ā€“21.3 PVE), associated with plant height, were mapped within 5-fold) of five genes especially in shoot, young leaf, shoot apical meristem of tall mapping parental accession (ICC8261) as compared to that of dwarf/semi-dwarf parent (ICC12299) was apparent. Overall, combining high-resolution QTL mapping with genetic association analysis and differential expression profiling, delineated natural allelic variants in five candidate genes (encoding cytochrome-c-biosynthesis protein, malic oxidoreductase, NADH dehydrogenase iron-sulfur protein, expressed protein and bZIP transcription factor) regulating plant height in chickpea. These molecular tags have potential to dissect complex plant height trait and accelerate marker-assisted genetic enhancement for developing cultivars with desirable plant height ideotypes in chickpea

    An efficient and cost-effective approach for genic microsatellite marker-based large-scale trait association mapping: identification of candidate genes for seed weight in chickpea

    Get PDF
    The large-scale validation and high-throughput genotyping of numerous informative genic microsatellite markers are required for association mapping to identify candidate genes for complex quantitative traits in chickpea. However, the screening and genotyping of such informative markers in individual genotypes/whole association panels for trait association mapping involves massive costs in terms of resources, time and labour due to low genetic polymorphism in chickpea. We have developed an alternative time-saving and cost-effective pool-based trait association mapping approach by combining pooled DNA analysis (with 616 genic microsatellite markers) and individual genotype (large structured association panel) genotyping. Using this approach we have identified seven seed weight-associated transcription factor gene-derived microsatellite markers (with minor allele frequency >15 %) in desi and kabuli chickpea. Strong marker allele effects of these five transcription factors with increasing seed weight in the contrasting desi and kabuli genotypes were evident. Bi-parental linkage mapping using 241 of the informative gene-based microsatellite markers resulted in the identification and mapping of nine such markers linked with three major quantitative trait loci (explaining a total phenotypic variance of 23.5ā€“34.7 %) on chromosomes 1 (CaqSW1.1: 73.5ā€“74.5 cM and CaqSW1.2: 79.3ā€“81.3 cM) and 2 (CaqSW2.1: 65.7ā€“67.5 cM) controlling 100-seed weight in chickpea. The integration of pool-based trait association mapping with differential expression profiling, traditional bi-parental linkage mapping and high-resolution microsatellite-single nucleotide polymorphism marker-based haplotyping/linkage disequilibrium mapping delineated four transcription factor genes (DUF3594, bZIP, DUF1635 and SBP) controlling seed weight in desi and kabuli chickpea. The strategies implemented in our study can be used in large-scale trait association mapping for the rapid identification of candidate genes and in the development of functional markers for traits of agricultural importance in crop species including chickpea

    Integrative genome-wide association studies (GWAS) to understand complex genetic architecture of quantitative traits in chickpea

    Get PDF
    Development of high-yielding stress-tolerant chickpea cultivars is essential to enhance its yield potential and productivity amidst climate change scenario. Unfortunately, superior lines/recombinants producing higher pod and seed yield under stress are not available in world chickpea collection. Therefore, genetic dissection of complex stress tolerance and yield-contributing quantitative traits is the prime objective in current chickpea genomics and breeding research. Our study employed diverse GWAS-assisted integrated genomic strategies involving classical genetic inheritance analysis, QTL mapping, differential transcript profiling, molecular haplotyping and haplotype-based gene domestication/ evolution study for rapid quantitative dissection of complex yield and stress tolerance traits in chickpea. To accomplish this, multi-location/years replicated yield traits-related field phenotyping and high-throughput marker genotyping information generated from numerous natural germplasm accessions (association panel) and multiple intra- and inter-specific mapping populations of chickpea were deployed in the aforesaid combinatorial genomic approaches. These analyses delineated 12 novel alleles and six haplotypes from 10 transcription factor genes and 16 major QTLs/eQTLs governing yield and stress tolerance traits that were mapped on 10 ultra-high density chickpea genetic linkage maps. The superior natural alleles/haplotypes of two major genes (QTLs) regulating seed weight and pod/seed number identified from cultivated and wild Cicer gene pools are being introduced into multiple high-yielding Indian varieties of chickpea for its marker-assisted genetic improvement. The potential molecular signatures delineated using integrated genomics- assisted breeding strategies have functional significance to understand the molecular genetic mechanism and natural allelic diversity-led domestication pattern underlying these complex quantitative traits at a genome-wide scale, leading to fast-paced translational genomics for chickpea genetic enhancement. These essential outcomes will be useful for devising the most efficient strategies to produce high-yielding climate-resilient chickpea cultivars for sustaining global food security

    Functionally Relevant Microsatellite Markers From Chickpea Transcription Factor Genes for Efficient Genotyping Applications and Trait Association Mapping

    Get PDF
    We developed 1108 transcription factor gene-derived microsatellite (TFGMS) and 161 transcription factor functional domain-associated microsatellite (TFFDMS) markers from 707 TFs of chickpea. The robust amplification efficiency (96.5%) and high intra-specific polymorphic potential (34%) detected by markers suggest their immense utilities in efficient large-scale genotyping applications, including construction of both physical and functional transcript maps and understanding population structure. Candidate gene-based association analysis revealed strong genetic association of TFFDMS markers with three major seed and pod traits. Further, TFGMS markers in the 5ā€² untranslated regions of TF genes showing differential expression during seed development had higher trait association potential. The significance of TFFDMS markers was demonstrated by correlating their allelic variation with amino acid sequence expansion/contraction in the functional domain and alteration of secondary protein structure encoded by genes. The seed weight-associated markers were validated through traditional bi-parental genetic mapping. The determination of gene-specific linkage disequilibrium (LD) patterns in desi and kabuli based on single nucleotide polymorphism-microsatellite marker haplotypes revealed extended LD decay, enhanced LD resolution and trait association potential of genes. The evolutionary history of a strong seed-size/weight-associated TF based on natural variation and haplotype sharing among desi, kabuli and wild unravelled useful information having implication for seed-size trait evolution during chickpea domestication

    Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea

    Get PDF
    A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the ļ¬rst time employed a NGS-based whole-genomeQTL-seq strategy to identify one major genomic region harbouring a robust 100- seed weight QT Lusinganintra-speciļ¬c 221 chickpea mapping population (desicv.ICC7184Ɨdesicv.ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reļ¬‚ects the reliability and efļ¬cacy of QTL-seq as a strategy for rapid genome-wide scanning and ļ¬ne mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177genes) major SWQTL (CaqSW1.1) regionintoa 35 kb genomic intervalondesi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic 9 (COP9) signalo some complex subunit (CSN8) gene of the see xhibited seed-speciļ¬c expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homo zygous individuals duringseed development.The coding SNP mined in this potential seed weight- governing candidate CSN8 genewas found to be present exclusively in all cultivated species/ genotypes, but notin any wild species/genotypes of primary, secondary and tertiary gene pools.This indicates the effect of strong artiļ¬cial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea

    Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea

    Get PDF
    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5ā€²-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea

    ABC Transporter-Mediated Transport of Glutathione Conjugates Enhances Seed Yield and Quality in Chickpea

    Get PDF
    The identification of functionally relevant molecular tags is vital for genomics-assisted crop improvement and enhancement of seed yield, quality, and productivity in chickpea (Cicer arietinum). The simultaneous improvement of yield/productivity as well as quality traits often requires pyramiding of multiple genes, which remains a major hurdle given various associated epistatic and pleotropic effects. Unfortunately, no single gene that can improve yield/productivity along with quality and other desirable agromorphological traits is known, hampering the genetic enhancement of chickpea. Using a combinatorial genomics-assisted breeding and functional genomics strategy, this study identified natural alleles and haplotypes of an ABCC3-type transporter gene that regulates seed weight, an important domestication trait, by transcriptional regulation and modulation of the transport of glutathione conjugates in seeds of desi and kabuli chickpea. The superior allele/haplotype of this gene introgressed in desi and kabuli near-isogenic lines enhances the seed weight, yield, productivity, and multiple desirable plant architecture and seed-quality traits without compromising agronomic performance. These salient findings can expedite crop improvement endeavors and the development of nutritionally enriched high-yielding cultivars in chickpea

    Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea

    Get PDF
    We discovered 26785 and 16573 high-quality SNPs differentiating two parental genotypes of a RIL mapping population using reference desi and kabuli genome-based GBS assay. Of these, 3625 and 2177 SNPs have been integrated into eight desi and kabuli chromosomes, respectively in order to construct ultra-high density (0.20ā€“0.37 cM) intra-specific chickpea genetic linkage maps. One of these constructed high-resolution genetic map has potential to identify 33 major genomic regions harbouring 35 robust QTLs (PVE: 17.9ā€“39.7%) associated with three agronomic traits, which were mapped within <1 cM mean marker intervals on desi chromosomes. The extended LD (linkage disequilibrium) decay (~15 cM) in chromosomes of genetic maps have encouraged us to use a rapid integrated approach (comparative QTL mapping, QTL-region specific haplotype/LD-based trait association analysis, expression profiling and gene haplotype-based association mapping) rather than a traditional QTL map-based cloning method to narrow-down one major seed weight (SW) robust QTL region. It delineated favourable natural allelic variants and superior haplotype-containing one seed-specific candidate embryo defective gene regulating SW in chickpea. The ultra-high-resolution genetic maps, QTLs/genes and alleles/haplotypes-related genomic information generated and integrated strategy for rapid QTL/gene identification developed have potential to expedite genomics-assisted breeding applications in crop plants, including chickpea for their genetic enhancement
    • ā€¦
    corecore