11,417 research outputs found

    Probing moments of baryon-antibaryon generalized parton distributions at BELLE and FAIR

    Full text link
    We analyze the time-like processes gamma gamma -> B Bbar and p p-bar -> gamma M at large Mandelstam variables within the handbag approach for which the process amplitudes factorize in hard partonic subprocesses and annihilation form factor. The latter represent moments of baryon-antibaryon generalized parton distributions. Symmetry relations restrict the number of independent annihilation form factors for the ground state baryons drastically. We determine these form factors from the present BELLE data on gamma gamma -> B Bbar with the help of simplifying assumptions. The knowledge of these form factors allow for predictions of p pbar -> gamma M for various mesons which may be probed at FAIR.Comment: 17 pages, 7 figure

    Electronic structure and Fermi surface tolopogy of Nax_xCoO2_2

    Full text link
    We construct an effective Hamiltonian for the motion of T2g highly correlated states in NaxCoO2. We solve exactly a multiband model in a CoO6 cluster with electronic occupation corresponding to a nominal Co valence of either +3 or +4. Using the ensuing ground states, we calculate the effective O mediated hopping t=0.10 eV between many-body T2g states, and estimate the direct hopping t'~0.04 eV. The trigonal splitting 3D=0.315 eV is taken from recent quantum chemistry calculations. The resulting effective Hamiltonian is solved using a generalized slave-boson mean-field approximation. The results show a significant band renormalization and a Fermi surface topology that agrees with experiment, in contrast to predictions using the local-density approximation.Comment: 4 pages, 2 figure

    Polarization dependence of x-ray absorption spectra in Na_xCoO_2

    Full text link
    In order to shed light on the electronic structure of Na_xCoO_2, and motivated by recent Co L-edge X-ray absorption spectra (XAS) experiments with polarized light, we calculate the electronic spectrum of a CoO_6 cluster including all interactions between 3d orbitals. We obtain the ground state for two electronic occupations in the cluster that correspond nominally to all O in the O^{-2} oxidation state, and Co^{+3} or Co^{+4}. Then, all excited states obtained by promotion of a Co 2p electron to a 3d electron, and the corresponding matrix elements are calculated. A fit of the observed experimental spectra is good and points out a large Co-O covalency and cubic crystal field effects, that result in low spin Co 3d configurations. Our results indicate that the effective hopping between different Co atoms plays a major role in determining the symmetry of the ground state in the lattice. Remaining quantitative discrepancies with the XAS experiments are expected to come from composition effects of itineracy in the ground and excited states.Comment: 10 pages, 4 figure

    Effective Hamiltonian for transition-metal compounds. Application to Na_xCoO_2

    Full text link
    We describe a simple scheme to construct a low-energy effective Hamiltonian H_eff for highly correlated systems containing non-metals like O, P or As (O in what follows) and a transition-metal (M) as the active part in the electronic structure, eliminating the O degrees of freedom from a starting Hamiltonian that contains all M d orbitals and all non-metal p orbitals. We calculate all interaction terms between d electrons originating from Coulomb repulsion, as a function of three parameters (F_0, F_2 and F_4) and write them in a basis of orbitals appropriate for cubic, tetragonal, tetrahedral or hexagonal symmetry around M. The approach is based on solving exactly (numerically if necessary) a MO_n cluster containing the transition-metal atom and its n nearest O atoms (for example a CoO_6 cluster in the case of the cobaltates, or a CuO_n cluster in the case of the cuprates, in which n depends on the number of apical O atoms), and mapping them into many-body states of the same symmetry containing d holes only. We illustrate the procedure for the case of Na_xCoO_2. The resulting H_eff, including a trigonal distortion D, has been studied recently and its electronic structure agrees well with angle-resolved photoemission spectra [A. Bourgeois, A. A. Aligia, and M. J. Rozenberg, Phys. Rev. Lett. 102, 066402 (2009)]. Although H_eff contains only 3d t_2g holes, the highly correlated states that they represent contain an important amount not only of O 2p holes but also of 3d e_g holes. When more holes are added, a significant redistribution of charge takes place. As a consequence of these facts, the resulting values of the effective interactions between t_2g states are smaller than previously assumed, rendering more important the effect of D in obtaining only one sheet around the center of the Brillouin zone for the Fermi surface (without additional pockets).Comment: 11 pages, 1 figure, accepted for publication in Phys.Rev.

    A Correlation Between Changes in Solar Luminosity and Differential Radius Measurements

    Get PDF
    Solar luminosity variations occurring during solar cycle 21 can be attributed in large part to the presence of sunspots and faculae. Nevertheless, there remains a residual portion of the luminosity variation distinctly unaccounted for by these phenomena of solar activity. At the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA), observations of the solar limb are capable of detecting changes in the solar limb darkening function by monitoring a quantity known as the differential radius. These observations are utilized in such a way that the effects of solar activity are minimized in order to reveal the more fundamental structure of the photosphere. The results of observations made during solar cycle 21 at various solar latitudes indicate that a measurable change did occur in the global photospheric limb darkening function. It is proposed that the residual luminosity change is associated in part with this change in limb darkening

    Exclusive annihilation p pbar -> gamma gamma in a generalized parton picture

    Full text link
    Exclusive proton-antiproton annihilation into two photons at large s (~10 GeV^2) and |t|,|u| ~ s can be described by a generalized parton picture analogous to the 'soft mechanism' in wide-angle real Compton scattering. The two photons are emitted in the annihilation of a single fast quark and antiquark. The matrix element describing the transition of the p-pbar system to a q-qbar pair can be related to the timelike proton elastic form factors as well as to the quark/antiquark distributions measured in inclusive deep-inelastic scattering. The reaction could be studied with the proposed 1.5-15 GeV high-luminosity antiproton storage ring (HESR) at GSI.Comment: 4 pages, revtex4, 3 eps figure
    • 

    corecore