673 research outputs found

    Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    Get PDF
    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material

    Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    Get PDF
    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test

    The use of videoconferencing with patients with psychosis: a review of the literature

    Get PDF
    Videoconferencing has become an increasingly viable tool in psychiatry, with a growing body of literature on its use with a range of patient populations. A number of factors make it particularly well suited for patients with psychosis. For example, patients living in remote or underserved areas can be seen by a specialist without need for travel. However, the hallmark symptoms of psychotic disorders might lead one to question the feasibility of videoconferencing with these patients. For example, does videoconferencing exacerbate delusions, such as paranoia or delusions of reference? Are acutely psychotic patients willing to be interviewed remotely by videoconferencing? To address these and other issues, we conducted an extensive review of Medline, PsychINFO, and the Telemedicine Information Exchange databases for literature on videoconferencing and psychosis. Findings generally indicated that assessment and treatment via videoconferencing is equivalent to in person and is tolerated and well accepted. There is little evidence that patients with psychosis have difficulty with videoconferencing or experience any exacerbation of symptoms; in fact, there is some evidence to suggest that the distance afforded can be a positive factor. The results of two large clinical trials support the reliability and effectiveness of centralized remote assessment of patients with schizophrenia

    Primary care patients in psychiatric clinical trials: a pilot study using videoconferencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While primary care physicians play a pivotal role in the treatment of depression, collaboration between primary care and psychiatry in clinical research has been limited. Primary care settings provide unique opportunities to improve the methodology of psychiatric clinical trials, by providing more generalizable and less treatment-resistant patients. We examined the feasibility of identifying, recruiting, screening and assessing primary care patients for psychiatric clinical trials using high-quality videoconferencing in a mock clinical trial.</p> <p>Methods</p> <p>1329 patients at two primary care clinics completed a self-report questionnaire. Those screening positive for major depression, panic, or generalized anxiety were given a diagnostic interview via videoconference. Those eligible were provided treatment as usual by their primary care physician, and had 6 weekly assessments by the off-site clinician via videoconferencing.</p> <p>Results</p> <p>45 patients were enrolled over 22 weeks, with 36 (80%) completing the six-week study with no more than two missed appointments. All diagnostic groups improved significantly; 94% reported they would participate again, 87% would recommend participation to others, 96% felt comfortable communicating via videoconference, and 94% were able to satisfactorily communicate their feelings via video.</p> <p>Conclusion</p> <p>Results showed that primary care patients will enroll, participate in and complete psychiatric research protocols using remote interviews conducted via videoconference.</p

    Continuous Human Activity Recognition using a MIMO Radar for Transitional Motion Analysis

    Full text link
    The prompt and accurate recognition of Continuous Human Activity (CHAR) is critical in identifying and responding to health events, particularly fall risk assessment. In this paper, we examine a multi-antenna radar system that can process radar data returns for multiple individuals in an indoor setting, enabling CHAR for multiple subjects. This requires combining spatial and temporal signal processing techniques through micro-Doppler (MD) analysis and high-resolution receive beamforming. We employ delay and sum beamforming to capture MD signatures at three different directions of observation. As MD images may contain multiple activities, we segment the three MD signatures using an STA/LTA algorithm. MD segmentation ensures that each MD segment represents a single human motion activity. Finally, the segmented MD image is resized and processed through a convolutional neural network (CNN) to classify motion against each MD segment

    Argyres-Seiberg duality and the Higgs branch

    Full text link
    We demonstrate the agreement between the Higgs branches of two N=2 theories proposed by Argyres and Seiberg to be S-dual, namely the SU(3) gauge theory with six quarks, and the SU(2) gauge theory with one pair of quarks coupled to the superconformal theory with E_6 flavor symmetry. In mathematical terms, we demonstrate the equivalence between a hyperkaehler quotient of a linear space and another hyperkaehler quotient involving the minimal nilpotent orbit of E_6, modulo the identification of the twistor lines.Comment: 27 pages; v2: published versio
    corecore