1,222 research outputs found
On the integrability of the n-centre problem
It is known that for centres and positive energies the -centre
problem of celestial mechanics leads to a flow with a strange repellor and
positive topological entropy.
Here we consider the energies above some threshold and show: Whereas for
arbitrary independent integrals of Gevrey class exist, no
real-analytic (that is, Gevrey class 1) independent integral exists.Comment: 22 pages, a short announcement see in math.DS/031242
Symbolic dynamics for the -centre problem at negative energies
We consider the planar -centre problem, with homogeneous potentials of
degree -\a<0, \a \in [1,2). We prove the existence of infinitely many
collisions-free periodic solutions with negative and small energy, for any
distribution of the centres inside a compact set. The proof is based upon
topological, variational and geometric arguments. The existence result allows
to characterize the associated dynamical system with a symbolic dynamics, where
the symbols are the partitions of the centres in two non-empty sets
Cluster Approximation for the Farey Fraction Spin Chain
We consider the Farey fraction spin chain in an external field . Utilising
ideas from dynamical systems, the free energy of the model is derived by means
of an effective cluster energy approximation. This approximation is valid for
divergent cluster sizes, and hence appropriate for the discussion of the
magnetizing transition. We calculate the phase boundaries and the scaling of
the free energy. At we reproduce the rigorously known asymptotic
temperature dependence of the free energy. For , our results are
largely consistent with those found previously using mean field theory and
renormalization group arguments.Comment: 17 pages, 3 figure
Modeling the CO2-effects of forest management and wood usage on a regional basis
BACKGROUND: At the 15(th) Conference of Parties of the UN Framework Convention on Climate Change, Copenhagen, 2009, harvested wood products were identified as an additional carbon pool. This modification eliminates inconsistencies in greenhouse gas reporting by recognizing the role of the forest and timber sector in the global carbon cycle. Any additional CO(2)-effects related to wood usage are not considered by this modification. This results in a downward bias when the contribution of the forest and timber sector to climate change mitigation is assessed. The following article analyses the overall contribution to climate protection made by the forest management and wood utilization through CO(2)-emissions reduction using an example from the German state of North Rhine-Westphalia. Based on long term study periods (2011 to 2050 and 2100, respectively). Various alternative scenarios for forest management and wood usage are presented. RESULTS: In the mid- to long-term (2050 and 2100, respectively) the net climate protection function of scenarios with varying levels of wood usage is higher than in scenarios without any wood usage. This is not observed for all scenarios on short and mid term evaluations. The advantages of wood usage are evident although the simulations resulted in high values for forest storage in the C pools. Even the carbon sink effect due to temporal accumulation of deadwood during the period from 2011 to 2100 is outbalanced by the potential of wood usage effects. CONCLUSIONS: A full assessment of the CO(2)-effects of the forest management requires an assessment of the forest supplemented with an assessment of the effects of wood usage. CO(2)-emission reductions through both fuel and material substitution as well as CO(2) sink in wood products need to be considered. An integrated assessment of the climate protection function based on the analysis of the study’s scenarios provides decision parameters for a strategic approach to climate protection with regard to forest management and wood use at regional and national levels. The short-term evaluation of subsystems can be misleading, rendering long-term evaluations (until 2100, or even longer) more effective. This is also consistent with the inherently long-term perspective of forest management decisions and measures
Chaotic quasi-collision trajectories in the 3-centre problem
We study a particular kind of chaotic dynamics for the planar 3-centre
problem on small negative energy level sets. We know that chaotic motions
exist, if we make the assumption that one of the centres is far away from the
other two (see Bolotin and Negrini, J. Diff. Eq. 190 (2003), 539--558): this
result has been obtained by the use of the Poincar\'e-Melnikov theory. Here we
change the assumption on the third centre: we do not make any hypothesis on its
position, and we obtain a perturbation of the 2-centre problem by assuming its
intensity to be very small. Then, for a dense subset of possible positions of
the perturbing centre on the real plane, we prove the existence of uniformly
hyperbolic invariant sets of periodic and chaotic almost collision orbits by
the use of a general result of Bolotin and MacKay (see Cel. Mech. & Dyn. Astr.
77 (2000), 49--75). To apply it, we must preliminarily construct chains of
collision arcs in a proper way. We succeed in doing that by the classical
regularisation of the 2-centre problem and the use of the periodic orbits of
the regularised problem passing through the third centre.Comment: 22 pages, 6 figure
- …