4,469 research outputs found

    Absorption-free optical control of spin systems:the quantum Zeno effect in optical pumping

    Get PDF
    We show that atomic spin motion can be controlled by circularly polarized light without light absorption in the strong pumping limit. In this limit, the pumping light, which drives the empty spin state, destroys the Zeeman coherence effectively and freezes the coherent transition via the quantum Zeno effect. It is verified experimentally that the amount of light absorption decreases asymptotically to zero as the incident light intensity is increased.Comment: 4 pages with 4 figure

    Supersymmetry, Naturalness, and Signatures at the LHC

    Get PDF
    Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low energy spectra that do not lead to severe fine-tuning. Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses, moderately large tan\beta, and a small \mu parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC -- the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry breaking, which are relevant in a model without fine-tuning.Comment: 56 pages, 24 figure

    Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials: Experiment and theory

    Get PDF
    We have experimentally realized Brewster's effect for transverse-electric waves with metamaterials. In dielectric media, Brewster's no-reflection effect arises only for transverse-magnetic waves. However, it has been theoretically predicted that Brewster's effect arises for TE waves under the condition that the relative permeability r is not equal to unity. We have designed an array of split-ring resonators as a metamaterial with mu_r 1 using a finite-difference time-domain method. The reflection measurements were carried out in a 3-GHz region and the disappearance of reflected waves at a particular incident angle was confirmed.Comment: 4 pages, 5 figure

    Making confining strings out of mesons

    Full text link
    The light mesons such as pi, rho, omega, f0, and a0 are possible candidates of magnetic degrees of freedom, if a magnetic dual picture of QCD exists. We construct a linear sigma model to describe spontaneous breaking of the magnetic gauge group, in which there is a stable vortex configuration of vector and scalar mesons. We numerically examine whether such a string can be interpreted as the confining string. By using meson masses and couplings as inputs, we calculate the tension of the string as well as the strength of the Coulomb force between static quarks. They are found to be consistent with those inferred from the quarkonium spectrum and the Regge trajectories of hadrons. By using the same Lagrangian, the critical temperature of the QCD phase transition is estimated, and a non-trivial flavor dependence is predicted. We also discuss a possible connection between the Seiberg duality and the magnetic model we studied.Comment: 22 pages, 2 figures, 3 tables, typos corrected, references adde

    Direct Mediation of Meta-Stable Supersymmetry Breaking

    Get PDF
    The supersymmetric SU(Nc) Yang-Mills theory coupled to Nf matter fields in the fundamental representation has meta-stable vacua with broken supersymmetry when Nc < Nf < 3/2 Nc. By gauging the flavor symmetry, this model can be coupled directly to the standard model. We show that it is possible to make a slight deformation to the model so that gaugino masses are generated and the Landau pole problem can be avoided. The deformed model has simple realizations on intersecting branes in string theory, where various features of the meta-stable vacua are encoded geometrically as brane configurations.Comment: 22 pages, 4 figures, a reference added, version to appear in PR

    Dynamical GUT breaking and mu-term driven supersymmetry breaking

    Get PDF
    Models for dynamical breaking of supersymmetric grand unified theories are presented. The doublet-triplet splitting problem is absent since the Higgs doublet superfields can be identified with the massless mesons of the strong gauge group whereas there are no massless states corresponding to the colored Higgs fields. Various strong gauge groups SU(Nc), Sp(Nc) and SO(Nc) are examined. In a model with SO(9) strong gauge group, adding the mu-term for the Higgs fields triggers to break supersymmetry in a meta-stable vacuum. The pattern of the supersymmetry breaking parameters is predicted to be the gauge-mediation type with modifications in the Higgs sector.Comment: 23 pages, 1 figure; version to appear in PR

    Spectral-Function Sum Rules in Supersymmetry Breaking Models

    Full text link
    The technique of Weinberg's spectral-function sum rule is a powerful tool for a study of models in which global symmetry is dynamically broken. It enables us to convert information on the short-distance behavior of a theory to relations among physical quantities which appear in the low-energy picture of the theory. We apply such technique to general supersymmetry breaking models to derive new sum rules.Comment: 18 pages, 1 figur

    Comparative study of macroscopic quantum tunneling in Bi_2Sr_2CaCu_2O_y intrinsic Josephson junctions with different device structures

    Get PDF
    We investigated macroscopic quantum tunneling (MQT) of Bi2_2Sr2_2CaCu2_2Oy_y intrinsic Josephson junctions (IJJs) with two device structures. One is a nanometer-thick small mesa structure with only two or three IJJs and the other is a stack of a few hundreds of IJJs on a narrow bridge structure. Experimental results of switching current distribution for the first switching events from zero-voltage state showed a good agreement with the conventional theory for a single Josephson junction, indicating that a crossover temperature from thermal activation to MQT regime for the former device structure was as high as that for the latter device structure. Together with the observation of multiphoton transitions between quantized energy levels in MQT regime, these results strongly suggest that the observed MQT behavior is intrinsic to a single IJJ in high-TcT_c cuprates, independent of device structures. The switching current distribution for the second switching events from the first resistive state, which were carefully distinguished from the first switchings, was also compared between two device structures. In spite of the difference in the heat transfer environment, the second switching events for both devices were found to show a similar temperature-independent behavior up to a much higher temperature than the crossover temperature for the first switching. We argue that it cannot be explained in terms of the self-heating owing to dissipative currents after the first switching. As possible candidates, the MQT process for the second switching and the effective increase of electronic temperature due to quasiparticle injection are discussed.Comment: 10pages, 7figures, submitted to Phys. Rev.

    Scaling theory of transport in complex networks

    Full text link
    Transport is an important function in many network systems and understanding its behavior on biological, social, and technological networks is crucial for a wide range of applications. However, it is a property that is not well-understood in these systems and this is probably due to the lack of a general theoretical framework. Here, based on the finding that renormalization can be applied to bio-networks, we develop a scaling theory of transport in self-similar networks. We demonstrate the networks invariance under length scale renormalization and we show that the problem of transport can be characterized in terms of a set of critical exponents. The scaling theory allows us to determine the influence of the modular structure on transport. We also generalize our theory by presenting and verifying scaling arguments for the dependence of transport on microscopic features, such as the degree of the nodes and the distance between them. Using transport concepts such as diffusion and resistance we exploit this invariance and we are able to explain, based on the topology of the network, recent experimental results on the broad flow distribution in metabolic networks.Comment: 8 pages, 6 figure

    Production and Polarization Effects in Some Tau-Lepton Decays

    Get PDF
    The conditions for the independence of decays of the spin-1/2 resonances on the production mechanism of the resonances and on polarizations of the incoming and outgoing particles are derived and applied in the case of several tau-lepton decays. The necessity for inclusion of the influence of the production mechanism in the evaluation of the lepton flavour violating decays is stressed.Comment: Invited Talk at the Seventh International Workshop on Tau Lepton Physics (TAU02), Santa Cruz, CA, USA, Sept. 2002, 6 pages LaTeX; One typo corrected, a note added, one reference adde
    corecore