20 research outputs found

    Characteristics and changes in SON rainfall over Uganda (1901-2013)

    Get PDF
    This study investigated the characteristics and changes in September-November (SON) rainfall over Uganda. The dominant mode of variability of SON rainfall was identified by performing Empirical orthogonal functions (EOF) analysis, using rainfall data from Climate Research Unit (CRU) for the period 1901 to 2013. Results indicate that the dominant mode of variability of SON rainfall exhibits a unimodal pattern, explaining 50.2% of the total variance. Mann-Kendall analysis was deployed to examine sudden changes in SON rainfall over the country. The findings show that the abrupt change in SON rainfall occurred in 1994. Further analysis reveal that SON rainfall over Uganda has a correlation pattern with the sea surface temperature (SST) over Indian, which depicts the positive phase of the Indian Ocean Dipole (IOD). Positive correlation is exhibited in the western IOD subregion, while negative correlation is shown in the southeastern IOD sub-region. Further study of the both driest and wettest years during the investigated time span indicate that throughout the wettest year, there were positive anomalies in the western sub-region, contrary to the driest year, when same subregion observed distinct negative anomalies. This illustrates that the positive phase of IOD enhances SON rainfall over Uganda, as opposed to the negative phase which inhibits SON rainfall. The evolution of the IOD can therefore be monitored for the improvement of SON rainfall forecasts, especially over Uganda so as to avoid the losses associated with weather extremes

    Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding

    Get PDF
    The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed

    The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking

    Get PDF
    BACKGROUND: Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. RESULTS: We used a CD25 (Tac) chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs) of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN) toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. CONCLUSION: This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly

    Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells

    No full text
    The late assembly (L) domain of retrovirus Gag, required in the final steps of budding for efficient exit from the host cell, is thought to mediate its function through interaction with unknown cellular factors. Here, we report the identification of the Nedd4-like family of E3 ubiquitin protein ligases as proteins that specifically interact with the Rous sarcoma virus (RSV) L domain in vitro and in vivo. We screened a chicken embryo cDNA expression library by using a peptide derived from the RSV p2b sequence, isolating two unique partial cDNA clones. Neither clone interacted with a peptide containing mutations known to disrupt in vivo RSV L domain function or with human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV) L domain-derived peptides. The WW domain region of one of the clones, late domain-interacting protein 1 (LDI-1), but not the C2 domain, bound RSV Gag and inhibited RSV Gag budding from human 293 cells in a dominant-negative manner, functionally implicating LDI-1 in RSV particle budding from cells. RSV Gag can be coimmune precipitated from cell extracts with an antisera directed at an exogenously expressed hemagglutinin (HA)-tagged LDI-1 or endogenous Nedd4 proteins. These findings mechanistically link the cellular ubiquitination pathway to retrovirus budding

    Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag)

    No full text
    Ubiquitination appears to be involved in virus particle release from infected cells. Free ubiquitin (Ub), as well as Ub covalently bound to a small fraction of p6 Gag, is detected in mature HIV particles. Here we report that the p6 region in the Pr55(Gag) structural precursor polyprotein binds to Tsg101, a putative Ub regulator that is involved in trafficking of plasma membrane-associated proteins. Tsg101 was found to interact with Gag in (i) a yeast two-hybrid assay, (ii) in vitro coimmunoprecipitation by using purified Pr55(Gag) and rabbit reticulocyte lysate-synthesized Tsg101, and (iii) in vivo in the cytoplasm of COS cells transfected with gag. The PTAPP motif [or late (L) domain] within p6, which is required for release of mature virus from the plasma membrane, was the determinant for binding Pr55(Gag). The N-terminal region in Tsg101, which is homologous to the Ubc4 class of Ub-conjugating (E2) enzymes, was the determinant of interaction with p6. Mutation of Tyr-110 in Tsg101, present in place of the active-site Cys that binds Ub in E2 enzymes, and other residues unique to Tsg101, impaired p6 interaction, indicating that features that distinguish Tsg101 from active E2 enzymes were important for binding the viral protein. The results link L-domain function in HIV to the Ub machinery and a specific component of the cellular trafficking apparatus

    Moesin regulates stable microtubule formation and limits retroviral infection in cultured cells

    No full text
    In a functional screen of mammalian complementary DNA libraries, we identified moesin as a novel gene whose overexpression blocks infection by murine leukemia viruses and human immunodeficiency virus type 1 in human and rodent lines, before the initiation of reverse transcription. Knockdown of moesin by RNA interference resulted in enhanced infection, suggesting that even the endogenous basal levels of moesin in rat fibroblasts are sufficient to limit virus infection. Moesin acts as a crosslinker between plasma membrane and actin filaments, as well as a signal transducer in responses involving cytoskeletal remodeling. Moesin overexpression was found to downregulate the formation of stable microtubules, whereas knockdown of moesin increased stable microtubule formation. A virus-resistant mutant cell line also displayed decreased stable microtubule levels, and virus-sensitive revertants recovered from the mutant line showed restoration of the stable microtubules, suggesting that these cytoskeletal networks play an important role in early post-entry events in the retroviral lifecycle. Together, these results suggest that moesin negatively regulates stable microtubule networks and is a natural determinant of cellular sensitivity to retroviral infection
    corecore