103 research outputs found

    A rigid barrier between the heart and sternum protects the heart and lungs against rupture during negative pressure wound therapy

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Right ventricular heart rupture is a devastating complication associated with negative pressure wound therapy (NPWT) in cardiac surgery. The use of a rigid barrier has been suggested to offer protection against this lethal complication, by preventing the heart from being drawn up and damaged by the sharp edges of the sternum. The aim of the present study was to investigate whether a rigid barrier protects the heart and lungs against injury during NPWT.</p> <p>Methods</p> <p>Sixteen pigs underwent median sternotomy followed by NPWT at -120 mmHg for 24 hours, in the absence (eight pigs) or presence (eight pigs) of a rigid plastic disc between the heart and the sternal edges. The macroscopic appearance of the heart and lungs was inspected after 12 and 24 hours of NPWT.</p> <p>Results</p> <p>After 24 hours of NPWT at -120 mmHg the area of epicardial petechial bleeding was 11.90 ± 1.10 cm<sup>2 </sup>when no protective disc was used, and 1.15 ± 0.19 cm<sup>2 </sup>when using the disc (p < 0.001). Heart rupture was observed in three of the eight animals treated with NPWT without the disc. Lung rupture was observed in two of the animals, and lung contusion and emphysema were seen in all animals treated with NPWT without the rigid disc. No injury to the heart or lungs was observed in the group of animals treated with NPWT using the rigid disc.</p> <p>Conclusion</p> <p>Inserting a rigid barrier between the heart and the sternum edges offers protection against heart rupture and lung injury during NPWT.</p

    New insights regarding the incidence, presentation and treatment options of aorto-oesophageal fistulation after thoracic endovascular aortic repair: the European Registry of Endovascular Aortic Repair Complications

    Get PDF
    OBJECTIVES: To review the incidence, clinical presentation, definite management and 1-year outcome in patients with aorto-oesophageal fistulation (AOF) following thoracic endovascular aortic repair (TEVAR). METHODS: International multicentre registry (European Registry of Endovascular Aortic Repair Complications) between 2001 and 2011 with a total caseload of 2387 TEVAR procedures (17 centres). RESULTS: Thirty-six patients with a median age of 69 years (IQR 56-75), 25% females and 9 patients (19%) following previous aortic surgery were identified. The incidence of AOF in the entire cohort after TEVAR in the study period was 1.5%. The primary underlying aortic pathology for TEVAR was atherosclerotic aneurysm formation in 53% of patients and the median time to development of AOF was 90 days (IQR 30-150). Leading clinical symptoms were fever of unknown origin in 29 (81%), haematemesis in 19 (53%) and shock in 8 (22%) patients. Diagnosis could be confirmed via computed tomography in 92% of the cases with the leading sign of a new mediastinal mass in 28 (78%) patients. A conservative approach resulted in a 100% 1-year mortality, and 1-year survival for an oesophageal stenting-only approach was 17%. Survival after isolated oesophagectomy was 43%. The highest 1-year survival rate (46%) could be achieved via an aggressive treatment including radical oesophagectomy and aortic replacement [relative risk increase 1.73 95% confidence interval (CI) 1.03-2.92]. The survival advantage of this aggressive treatment modality could be confirmed in bootstrap analysis (95% CI 1.11-3.33). CONCLUSIONS: The development of AOF is a rare but lethal complication after TEVAR, being associated with the need for emergency TEVAR as well as mediastinal haematoma formation. The only durable and successful approach to cure the disease is radical oesophagectomy and extensive aortic reconstruction. These findings may serve as a decision-making tool for physicians treating these complex patients

    Microvascular blood flow response in the intestinal wall and the omentum during negative wound pressure therapy of the open abdomen

    Get PDF
    PURPOSE: Higher closure rates of the open abdomen have been reported with negative pressure wound therapy (NPWT) compared with other wound therapy techniques. However, the method has occasionally been associated with increased development of intestinal fistulae. The present study measures microvascular blood flow in the intestinal wall and the omentum before and during NPWT. METHODS: Six pigs underwent midline incision and application of NPWT to the open abdomen. The microvascular blood flow in the underlying intestinal loop wall and the omentum was recorded before and after the application of NPWT of -50, -70, -100, -120, -150, and -170 mmHg respectively, using laser Doppler velocimetry. RESULTS: A significant decrease in microvascular blood flow was seen in the intestinal wall during application of all negative pressures levels. The blood flow was 2.7 (±0.2) Perfusion Units (PU) before and 2.0 (±0.2) PU (*p < 0.05) after application of -50 mmHg, and 3.6 (±0.6) PU before and 1.5 (±0.2) PU (**p < 0.01) after application of -170 mmHg. CONCLUSIONS: In the present study, we show that negative pressures between -50 and -170 mmHg induce a significant decrease in the microvascular blood flow in the intestinal wall. The decrease in blood flow increased with the amount of negative pressure applied. One can only speculate that a longstanding decreased blood flow in the intestinal wall may induce ischemia and secondary necrosis in the intestinal wall, which, theoretically, could promote the development of intestinal fistulae. We believe that NPWT of the open abdomen is a very effective treatment but could probably be improved

    Human cardiac tissue in a microperfusion chamber simulating extracorporeal circulation - ischemia and apoptosis studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After coronary artery bypass grafting ischemia/reperfusion injury inducing cardiomyocyte apoptosis may occur. This surgery-related inflammatory reaction appears to be of extreme complexity with regard to its molecular, cellular and tissue mechanisms and many studies have been performed on animal models. However, finding retrieved from animal studies were only partially confirmed in humans. To investigate this phenomenon and to evaluate possible therapies in vitro, adequate human cardiomyocyte models are required. We established a tissue model of human cardiomyocytes preserving the complex tissue environment. To our knowledge human cardiac tissue has not been investigated in an experimental setup mimicking extracorporeal circulation just in accordance to clinical routine, yet.</p> <p>Methods</p> <p>Cardiac biopsies were retrieved from the right auricle of patients undergoing elective coronary artery bypass grafting before cardiopulmonary bypass. The extracorporeal circulation was simulated by submitting the biopsies to varied conditions simulating cardioplegia (cp) and reperfusion (rep) in a microperfusion chamber. Cp/rep time sets were 20/7, 40/13 and 60/20 min. For analyses of the calcium homoeostasis the fluorescent calcium ion indicator FURA-2 and for apoptosis detection PARP-1 cleavage immunostaining were employed. Further the anti-apoptotic effect of carvedilol [10 μM] was investigated by adding into the perfusate.</p> <p>Results</p> <p>Viable cardiomyocytes presented an intact calcium homoeostasis under physiologic conditions. Following cardioplegia and reperfusion a time-dependent elevation of cytosolic calcium as a sign of disarrangement of the calcium homoeostasis occurred. PARP-1 cleavage also showed a time-dependence whereas reperfusion had the highest impact on apoptosis. Cardioplegia and carvedilol could reduce apoptosis significantly, lowering it between 60-70% (p < 0.05).</p> <p>Conclusions</p> <p>Our human cardiac preparation served as a reliable cellular model tool to study apoptosis in vitro. Decisively cardiac tissue from the right auricle can be easily obtained at nearly every cardiac operation avoiding biopsying of the myocardium or even experiments on animals.</p> <p>The apoptotic damage induced by the ischemia/reperfusion stimulus could be significantly reduced by the cold crystalloid cardioplegia. The additional treatment of cardiomyocytes with a non-selective β-blocker, carvedilol had even a significantly higher reduction of apoptotis.</p

    Influence of hypothermia on right atrial cardiomyocyte apoptosis in patients undergoing aortic valve replacement

    Get PDF
    BACKGROUND: There is increasing evidence that programmed cell death can be triggered during cardiopulmonary bypass (CPB) and may be involved in postoperative complications. The purpose of this study was to investigate whether apoptosis occurs during aortic valve surgery and whether modifying temperature during CPB has any influence on cardiomyocyte apoptotic death rate. METHODS: 20 patients undergoing elective aortic valve replacement for aortic stenosis were randomly assigned to either moderate hypothermic (ModHT group, n = 10, 28°C) or mild hypothermic (MiHT group, n = 10, 34°C) CPB. Myocardial samples were obtained from the right atrium before and after weaning from CPB. Specimens were examined for apoptosis by flow cytometry analysis of annexin V-propidium iodide (PI) and Fas death receptor staining. RESULTS: In the ModHT group, non apoptotic non necrotic cells (annexin negative, PI negative) decreased after CPB, while early apoptotic (annexin positive, PI negative) and late apoptotic or necrotic (PI positive) cells increased. In contrast, no change in the different cell populations was observed over time in the MiHT group. Fas expression rose after reperfusion in the ModHT group but not in MiHT patients, in which there was even a trend for a lower Fas staining after CPB (p = 0.08). In ModHT patients, a prolonged ischemic time tended to induce a higher increase of Fas (p = 0.061). CONCLUSION: Our data suggest that apoptosis signal cascade is activated at early stages during aortic valve replacement under ModHT CPB. This apoptosis induction can effectively be attenuated by a more normothermic procedure

    The challenge to verify ceramide's role of apoptosis induction in human cardiomyocytes - a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardioplegia and reperfusion of the myocardium may be associated with cardiomyocyte apoptosis and subsequent myocardial injury. In order to establish a pharmacological strategy for the prevention of these events, this study aimed to verify the reliability of our human cardiac model and to evaluate the pro-apoptotic properties of the sphingolipid second messenger ceramide and the anti-apoptotic properties of the acid sphingomyelinase inhibitor amitryptiline during simulated cardioplegia and reperfusion ex vivo.</p> <p>Methods</p> <p>Cardiac biopsies were retrieved from the right auricle of patients undergoing elective CABG before induction of cardiopulmonary bypass. Biopsies were exposed to <it>ex vivo </it>conditions of varying periods of cp/rep (30/10, 60/20, 120/40 min). Groups: I (untreated control, n = 10), II (treated control cp/rep, n = 10), III (cp/rep + ceramide, n = 10), IV (cp/rep + amitryptiline, n = 10) and V (cp/rep + ceramide + amitryptiline, n = 10). For detection of apoptosis anti-activated-caspase-3 and PARP-1 cleavage immunostaining were employed.</p> <p>Results</p> <p>In group I the percentage of apoptotic cardiomyocytes was significantly (p < 0.05) low if compared to group II revealing a time-dependent increase. In group III ceramid increased and in group IV amitryptiline inhibited apoptosis significantly (p < 0.05). In contrast in group V, under the influence of ceramide and amitryptiline the induction of apoptosis was partially suppressed.</p> <p>Conclusion</p> <p>Ceramid induces and amitryptiline suppresses apoptosis significantly in our ex vivo setting. This finding warrants further studies aiming to evaluate potential beneficial effects of selective inhibition of apoptosis inducing mediators on the suppression of ischemia/reperfusion injury in clinical settings.</p

    Aorto-bronchial and aorto-pulmonary fistulation after thoracic endovascular aortic repair: an analysis from the European Registry of Endovascular Aortic Repair Complications.

    Get PDF
    OBJECTIVES: To learn upon incidence, underlying mechanisms and effectiveness of treatment strategies in patients with central airway and pulmonary parenchymal aorto-bronchial fistulation after thoracic endovascular aortic repair (TEVAR). METHODS: Analysis of an international multicentre registry (European Registry of Endovascular Aortic Repair Complications) between 2001 and 2012 with a total caseload of 4680 TEVAR procedures (14 centres). RESULTS: Twenty-six patients with a median age of 70 years (interquartile range: 60-77) (35% female) were identified. The incidence of either central airway (aorto-bronchial) or pulmonary parenchymal (aorto-pulmonary) fistulation (ABPF) in the entire cohort after TEVAR in the study period was 0.56% (central airway 58%, peripheral parenchymal 42%). Atherosclerotic aneurysm formation was the leading indication for TEVAR in 15 patients (58%). The incidence of primary endoleaks after initial TEVAR was n = 10 (38%), of these 80% were either type I or type III endoleaks. Fourteen patients (54%) developed central left bronchial tree lesions, 11 patients (42%) pulmonary parenchymal lesions and 1 patient (4%) developed a tracheal lesion. The recognized mechanism of ABPF was external compression of the bronchial tree in 13 patients (50%), the majority being due to endoleak formation, further ischaemia due to extensive coverage of bronchial feeding arteries in 3 patients (12%). Inflammation and graft erosion accounted for 4 patients (30%) each. Cumulative survival during the entire study period was 39%. Among deaths, 71% were attributed to ABPF. There was no difference in survival in patients having either central airway or pulmonary parenchymal ABPF (33 vs 45%, log-rank P = 0.55). Survival with a radical surgical approach was significantly better when compared with any other treatment strategy in terms of overall survival (63 vs 32% and 63 vs 21% at 1 and 2 years, respectively), as well as in terms of fistula-related survival (63 vs 43% and 63 vs 43% at 1 and 2 years, respectively). CONCLUSIONS: ABPF is a rare but highly lethal complication after TEVAR. The leading mechanism behind ABPF seems to be a continuing external compression of either the bronchial tree or left upper lobe parenchyma. In this setting, persisting or newly developing endoleak formation seems to play a crucial role. Prognosis does not differ in patients with central airway or pulmonary parenchymal fistulation. Radical bronchial or pulmonary parenchymal repair in combination with stent graft removal and aortic reconstruction seems to be the most durable treatment strategy
    corecore