52,383 research outputs found
The X-ray Outburst of H1743-322: High-Frequency QPOs with a 3:2 Frequency Ratio
We observed the 2003 X-ray outburst of H1743-322 in a series of 130 pointed
observation with RXTE. We searched individual observations for high-frequency
QPOs (HFQPOs) and found only weak or marginal detections near 240 and 160 Hz.
We next grouped the observations in several different ways and computed the
average power-density spectra (PDS) in a search for further evidence of HFQPOs.
This effort yielded two significant results for those observations defined by
the presence of low-frequency QPOs (0.1-20 Hz) and an absence of
``band-limited'' power continua: (1) The 9 time intervals with the highest 7-35
keV count rates yielded an average PDS with a QPO at Hz. (; 3--35 keV); and (2) a second group with lower 7-35 keV count rates (26
intervals) produced an average PDS with a QPO at Hz (;
7--35 keV). The ratio of these two frequencies is . This finding
is consistent with results obtained for three other black hole systems that
exhibit commensurate HFQPOs in a 3:2 ratio. Furthermore, the occurrence of
H1743-322's slower HFQPO at times of higher X-ray luminosity closely resembles
the behavior of XTE J1550-564 and GRO J1655-40. We discuss our results in terms
of a resonance model that invokes frequencies set by general relativity for
orbital motions near a black-hole event horizon.Comment: 12 pages, 3 figures, submitted to Ap
High efficiency dark-to-bright exciton conversion in carbon nanotubes
We report that dark excitons can have a large contribution to the emission
intensity in carbon nanotubes due to an efficient exciton conversion from a
dark state to a bright state. Time-resolved photoluminescence measurements are
used to investigate decay dynamics and diffusion properties of excitons, and we
obtain intrinsic lifetimes and diffusion lengths of bright excitons as well as
diffusion coefficients for both bright and dark excitons. We find that the
dark-to-bright transition rates can be considerably high, and that more than
half of the dark excitons can be transformed into the bright excitons. The
state transition rates have a large chirality dependence with a family pattern,
and the conversion efficiency is found to be significantly enhanced by adsorbed
air molecules on the surface of the nanotubes. Our findings show the nontrivial
significance of the dark excitons on the emission kinetics in low dimensional
materials, and demonstrate the potential for engineering the dark-to-bright
conversion process by using surface interactions.Comment: 7 pages, 4 figure
From quantum circuits to adiabatic algorithms
This paper explores several aspects of the adiabatic quantum computation
model. We first show a way that directly maps any arbitrary circuit in the
standard quantum computing model to an adiabatic algorithm of the same depth.
Specifically, we look for a smooth time-dependent Hamiltonian whose unique
ground state slowly changes from the initial state of the circuit to its final
state. Since this construction requires in general an n-local Hamiltonian, we
will study whether approximation is possible using previous results on ground
state entanglement and perturbation theory. Finally we will point out how the
adiabatic model can be relaxed in various ways to allow for 2-local partially
adiabatic algorithms as well as 2-local holonomic quantum algorithms.Comment: Version accepted by and to appear in Phys. Rev.
Comment on ``Quantum Phase Transition of the Randomly Diluted Heisenberg Antiferromagnet on a Square Lattice''
In Phys. Rev. Lett. 84, 4204 (2000) (cond-mat/9905379), Kato et al. presented
quantum Monte Carlo results indicating that the critical concentration of
random non-magnetic sites in the two-dimensional antiferromagnetic Heisenberg
model equals the classical percolation density; pc=0.407254. The data also
suggested a surprising dependence of the critical exponents on the spin S of
the magnetic sites, with a gradual approach to the classical percolation
exponents as S goes to infinity. I here argue that the exponents in fact are
S-independent and equal to those of classical percolation. The apparent
S-dependent behavior found by Kato et al. is due to temperature effects in the
simulations as well as a quantum effect that masks the true asymptotic scaling
behavior for small lattices.Comment: Comment on Phys. Rev. Lett. 84, 4204 (2000), by K. Kato et al.; 1
page, 1 figur
Curious Variables Experiment (CURVE). CCD photometry of active dwarf nova DI UMa
We report an analysis of photometric behaviour of DI UMa, an extremely active
dwarf nova. The observational campaign (completed in 2007) covers five
superoutbursts and four normal outbursts. We examined principal parameters of
the system to understand peculiarities of DI UMa, and other active cataclysmic
variables. Based on precise photometric measurements, temporal light curve
behaviour, O-C analysis, and power spectrum analysis, we investigated physical
parameters of the system. We found that the period of the supercycle now equals
31.45 +/-0.3 days. Observations during superoutbursts infer that the period of
superhumps equals P_sh = 0.055318(11) days (79.66 +/- 0.02 min). During
quiescence, the light curve reveals a modulation of period P_orb = 0.054579(6)
days (78.59 +/- 0.01 min), which we interpret as the orbital period of the
binary system. The values obtained allowed us to determine a fractional period
excess of 1.35% +/- 0.02%, which is surprisingly small compared to the usual
value for dwarf novae (2%-5%). A detailed O-C analysis was performed for two
superoutbursts with the most comprehensive coverage. In both cases, we detected
an increase in the superhump period with a mean rate of dot_P/P_sh =
4.4(1.0)*10^{-5}. Based on these measurements, we confirm that DI UMa is
probably a period bouncer, an old system that reached its period minimum a long
time ago, has a secondary that became a degenerate brown dwarf, the entire
system evolving now toward longer periods. DI UMa is an extremely interesting
object because we know only one more active ER UMa star with similar
characteristics (IX Dra).Comment: Accepted for publication in Astronomy & Astrophysic
Perturbative Gadgets at Arbitrary Orders
Adiabatic quantum algorithms are often most easily formulated using many-body
interactions. However, experimentally available interactions are generally
two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by
which arbitrary three-body effective interactions can be obtained using
Hamiltonians consisting only of two-body interactions. These three-body
effective interactions arise from the third order in perturbation theory. Since
their introduction, perturbative gadgets have become a standard tool in the
theory of quantum computation. Here we construct generalized gadgets so that
one can directly obtain arbitrary k-body effective interactions from two-body
Hamiltonians. These effective interactions arise from the kth order in
perturbation theory.Comment: Corrected an error: U dagger vs. U invers
- …
