631 research outputs found
Stability of Quasicrystals Composed of Soft Isotropic Particles
Quasicrystals whose building blocks are of mesoscopic rather than atomic
scale have recently been discovered in several soft-matter systems. Contrary to
metallurgic quasicrystals whose source of stability remains a question of great
debate to this day, we argue that the stability of certain soft-matter
quasicrystals can be directly explained by examining a coarse-grained free
energy for a system of soft isotropic particles. We show, both theoretically
and numerically, that the stability can be attributed to the existence of two
natural length scales in the pair potential, combined with effective three-body
interactions arising from entropy. Our newly gained understanding of the
stability of soft quasicrystals allows us to point at their region of stability
in the phase diagram, and thereby may help control the self-assembly of
quasicrystals and a variety of other desired structures in future experimental
realizations.Comment: Revised abstract, more detailed explanations, and better images of
the numerical minimization of the free energ
Nonlocal Scalar Quantum Field Theory: Functional Integration, Basis Functions Representation and Strong Coupling Expansion
Nonlocal QFT of one-component scalar field in -dimensional
Euclidean spacetime is considered. The generating functional (GF) of complete
Green functions as a functional of external source , coupling
constant , and spatial measure is studied. An expression for GF
in terms of the abstract integral over the primary field
is given. An expression for GF in terms of integrals
over the primary field and separable Hilbert space (HS) is obtained by means of
a separable expansion of the free theory inverse propagator over the
separable HS basis. The classification of functional integration measures
is formulated, according to which trivial and
two nontrivial versions of GF are obtained. Nontrivial versions
of GF are expressed in terms of -norm and -norm,
respectively. The definition of the -norm generator is suggested.
Simple cases of sharp and smooth generators are considered. Expressions for GF
in terms of integrals over the separable HS with new integrands
are obtained. For polynomial theories and for
the nonpolynomial theory , integrals over the separable HS in
terms of a power series over the inverse coupling constant for
both norms (-norm and -norm) are calculated. Critical values of model
parameters when a phase transition occurs are found numerically. A
generalization of the theory to the case of the uncountable integral over HS is
formulated. A comparison of two GFs , one in the case of
uncountable HS integral and one obtained using the Parseval-Plancherel
identity, is given.Comment: 26 pages, 2 figures; v2: significant additions in the text; prepared
for the special issue "QCD and Hadron Structure" of the journal Particles;
v3: minimal corrections; v4: paragraphs added related to Reviewer comment
The principles and methods of the appraisal of commercialization projects of the Universities innovations
The article deals with the summing up of the foreign experience and modern Russian tools of the appraisal of commercialization new technologies, worked up at UniversitiesyesБелгородский государственный университе
Bethe Ansatz solution of a decagonal rectangle triangle random tiling
A random tiling of rectangles and triangles displaying a decagonal phase is
solved by Bethe Ansatz. Analogously to the solutions of the dodecagonal square
triangle and the octagonal rectangle triangle tiling an exact expression for
the maximum of the entropy is found.Comment: 17 pages, 4 figures, some remarks added and typos correcte
Generation of coherent terahertz pulses in Ruby at room temperature
We have shown that a coherently driven solid state medium can potentially
produce strong controllable short pulses of THz radiation. The high efficiency
of the technique is based on excitation of maximal THz coherence by applying
resonant optical pulses to the medium. The excited coherence in the medium is
connected to macroscopic polarization coupled to THz radiation. We have
performed detailed simulations by solving the coupled density matrix and
Maxwell equations. By using a simple -type energy scheme for ruby, we have
demonstrated that the energy of generated THz pulses ranges from hundreds of
pico-Joules to nano-Joules at room temperature and micro-Joules at liquid
helium temperature, with pulse durations from picoseconds to tens of
nanoseconds. We have also suggested a coherent ruby source that lases on two
optical wavelengths and simultaneously generates THz radiation. We discussed
also possibilities of extension of the technique to different solid-state
materials
Self-Diffusion in Random-Tiling Quasicrystals
The first explicit realization of the conjecture that phason dynamics leads
to self-diffusion in quasicrystals is presented for the icosahedral Ammann
tilings. On short time scales, the transport is found to be subdiffusive with
the exponent , while on long time scales it is consistent
with normal diffusion that is up to an order of magnitude larger than in the
typical room temperature vacancy-assisted self-diffusion. No simple finite-size
scaling is found, suggesting anomalous corrections to normal diffusion, or
existence of at least two independent length scales.Comment: 11 pages + 2 figures, COMPRESSED postscript figures available by
anonymous ftp to black_hole.physics.ubc.ca directory outgoing/diffuse (use bi
for binary mode to transfer), REVTeX 3.0, CTP-TAMU 21/9
ДИНАМИКА ПРИРОДНОЙ СРЕДЫ МОНГОЛЬСКОГО АЛТАЯ В ГОЛОЦЕНЕ = [Environmental changes in the Mongolian Altai during the Holocene¡]
- …
