133 research outputs found

    An investigation into the effect of thickness of titanium dioxide and gold-silver nanoparticle titanium dioxide composite thin-films on photocatalytic activity and photo-induced oxygen production in a sacrificial system

    Get PDF
    Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol–gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of [similar]200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82−) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films

    Evaluation of Surface State Mediated Charge Recombination in Anatase and Rutile TiO2

    No full text
    In nanostructured thin films, photogenerated charge carriers can access the surface more easily than in dense films and thus react more readily. However, the high surface area of these films has also been associated with enhanced recombination losses via surface states. We herein use transient absorption spectroscopy to compare the ultrafast charge carrier kinetics in dense and nanostructured TiO2 films for its two most widely used polymorphs: anatase and rutile. We find that nanostructuring does not enhance recombination rates on ultrafast timescales, indicating that surface state mediated recombination is not a key loss pathway for either TiO2 polymorph. Rutile shows faster, and less intensity-dependent recombination than anatase, which we assign to its higher doping density. For both polymorphs, we conclude that bulk rather than surface recombination is the primary determinant of charge carrier lifetime

    Parasitic light absorption, rate laws and heterojunctions in the photocatalytic oxidation of arsenic(III) using composite TiO2/Fe2O3

    Get PDF
    Composite photocatalyst-adsorbents such as TiO2/Fe2O3 are promising materials for the one-step treatment of arsenite contaminated water. However, no previous study has investigated how coupling TiO2 with Fe2O3 influences the photocatalytic oxidation of arsenic(III). Herein, we develop new hybrid experiment/modelling approaches to study light absorption, charge carrier behaviour and changes in the rate law of the TiO2/Fe2O3 system, using UV-Vis spectroscopy, transient absorption spectroscopy (TAS), and kinetic analysis. Whilst coupling TiO2 with Fe2O3 improves total arsenic removal by adsorption, oxidation rates significantly decrease (up to a factor of 60), primarily due to the parasitic absorption of light by Fe2O3 (88% of photons at 368 nm) and secondly due to changes in the rate law from disguised zero-order kinetics to first-order kinetics. Charge transfer across this TiO2-Fe2O3 heterojunction is not observed. Our study demonstrates the first application of a multi-adsorbate surface complexation model (SCM) towards describing As(III) oxidation kinetics which, unlike Langmuir-Hinshelwood kinetics, includes the competitive adsorption of As(V), and we further highlight the importance of parasitic light absorption and catalyst fouling when designing heterogeneous photocatalysts for As(III) remediation

    Aerosol-Assisted Chemical Vapour Deposition of Transparent Zinc Gallate Films

    Get PDF
    Aerosol-assisted chemical vapour deposition (AACVD) reactions of GaMe3, ZnEt2 and the donor-functionalised alcohol HOCH2CH2OMe (6 equiv.) in toluene resulted in the deposition of amorphous transparent zinc gallate (ZnGa2O4) films at a range of temperatures (350–550 °C). The zinc–gallium oxide films were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis, glancing-angle X-ray powder diffraction (XRD) and optical studies. The optimum growth temperature was found to be 450 °C, which produced transparent films with excellent coverage of the substrate. XPS confirmed the presence of zinc, gallium and oxygen in the films. Annealing these films at 1000 °C resulted in crystalline films and glancing-angle powder XRD showed that a zinc gallate spinel framework with a lattice parameter of a=8.336(5) Å was adopted

    A review of inorganic photoelectrode developments and reactor scale-up challenges for solar hydrogen production

    Get PDF
    Green hydrogen, produced using solar energy, is a promising means of reducing greenhouse gas emissions. Photoelectrochemical (PEC) water splitting devices can produce hydrogen using sunlight and integrate the distinct functions of photovoltaics and electrolyzers in a single device. There is flexibility in the degree of integration between these electrical and chemical energy generating components, and so a plethora of archetypal PEC device designs has emerged. Although some materials have effectively been ruled out for use in commercial PEC devices, many principles of material design and synthesis have been learned. Here, the fundamental requirements of PEC materials, the top performances of the most widely studied inorganic photoelectrode materials, and reactor structures reported for unassisted solar water splitting are revisited. The main phenomena limiting the performance of up‐scaled PEC devices are discussed, showing that engineering must be considered in parallel with material development for the future piloting of PEC water splitting systems. To establish the future commercial viability of this technology, more accurate techno‐economic analyses should be carried out using data from larger scale demonstrations, and hence more durable and efficient PEC systems need to be developed that meet the challenges imposed from both material and engineering perspectives

    Multifunctional P-Doped TiO2 Films: A New Approach to Self-Cleaning, Transparent Conducting Oxide Materials

    Get PDF
    Multifunctional P-doped TiO2 thin films were synthesized by atmospheric pressure chemical vapor deposition (APCVD). This is the first example of P-doped TiO2 films with both P5+ and P3– states, with the relative proportion being determined by synthesis conditions. This technique to control the oxidation state of the impurities presents a new approach to achieve films with both self-cleaning and TCO properties. The origin of electrical conductivity in these materials was correlated to the incorporation of P5+ species, as suggested by Hall Effect probe measurements. The photocatalytic performance of the films was investigated using the model organic pollutant, stearic acid, with films containing predominately P3– states found to be vastly inferior photocatalysts compared to undoped TiO2 films. Transient absorption spectroscopy studies also showed that charge carrier concentrations increased by several orders of magnitude in films containing P5+ species only, whereas photogenerated carrier lifetimes—and thus photocatalytic activity—were severely reduced upon incorporation of P3– species. The results presented here provide important insights on the influence of dopant nature and location within a semiconductor structure. These new P-doped TiO2 films are a breakthrough in the development of multifunctional advanced materials with tuned properties for a wide range of applications

    Studying the effects of processing parameters in the aerosol-assisted chemical vapour deposition of TiO2 coatings on glass for applications in photocatalytic NOx remediation

    Get PDF
    Herein, we employ an aerosol-assisted method (AA-CVD) to produce TiO2 on window glass and study how the process parameters affect their photocatalytic activity towards NOx (NO + NO2) remediation. A range of process parameters are explored to produce 50 unique TiO2 coatings with wide ranging physicochemical properties. The physicochemical properties were examined using X-ray diffraction (XRD), atomic force microscopy (AFM), UV–visible transmission spectroscopy and transient absorption spectroscopy (TAS), and the photocatalytic activity towards NO gas was measured using protocol akin to the ISO (22197-1:2016). The most active sample showed an NO removal of ∼14.4 ± 1.7 % and NOx removal of ∼5.4 ± 0.77 %, which was ∼40 and ∼25 times higher than that of a commercially available self-cleaning window. The links between the process parameters, physicochemical properties and photocatalytic activity were studied in depth, where it was seen that the three most influential physicochemical properties on the observed activity were surface roughness, charge carrier population and charge carrier lifetime. Therefore, we recommend that these properties be targeted in the rational design of more active coatings for applications in photocatalytic NOx remediation

    ZnO/BiOI heterojunction photoanodes with enhanced photoelectrochemical water oxidation activity

    Get PDF
    ZnO/BiOI heterojunction photoanode thin films were prepared by aerosol-assisted chemical vapour deposition, and the impact of growth temperature and film thickness on the water oxidation functionality was systematically investigated. A top ZnO layer with a thickness of 120 nm (deposited at 350 °C) and a 390 nm thick BiOI layer (deposited at 300 °C) were found to achieve the best photoelectrochemical performance of the heterojunction. The ZnO/BiOI heterojunction exhibited a significant increase in photoelectrochemical activity, with a photocurrent of 0.27 mA·cm−2 observed at 1.1 VRHE (350 nm, 2.58 mW·cm−2), which is ~ 2.2 times higher than that of single-layer ZnO and far higher than that of BiOI. Photoluminescence spectroscopy and transient absorption spectroscopy measurements showed that there was effective charge transfer across the heterojunction which spatially separated charge carriers and increased their lifetime and ability to drive photoelectrochemical water oxidation

    Charge Transport Phenomena in Heterojunction Photocatalysts: The WO₃/TiO₂ System as an Archetypical Model

    Get PDF
    Recent studies have demonstrated the high efficiency through which nanostructured core–shell WO3/TiO2 (WT) heterojunctions can photocatalytically degrade model organic pollutants (stearic acid, QE ≈ 18% @ λ = 365 nm), and as such, has varied potential environmental and antimicrobial applications. The key motivation herein is to connect theoretical calculations of charge transport phenomena, with experimental measures of charge carrier behavior using transient absorption spectroscopy (TAS), to develop a fundamental understanding of how such WT heterojunctions achieve high photocatalytic efficiency (in comparison to standalone WO3 and TiO2 photocatalysts). This work reveals an order of magnitude enhancement in electron and hole recombination lifetimes, respectively located in the TiO2 and WO3 sides, when an optimally designed WT heterojunction photocatalyst operates under UV excitation. This observation is further supported by our computationally captured details of conduction band and valence band processes, identified as (i) dominant electron transfer from WO3 to TiO2 via the diffusion of excess electrons; and (ii) dominant hole transfer from TiO2 to WO3 via thermionic emission over the valence band edge. Simultaneously, our combined theoretical and experimental study offers a time-resolved understanding of what occurs on the micro- to milliseconds (μs–ms) time scale in this archetypical photocatalytic heterojunction. At the microsecond time scale, a portion of the accumulated holes in WO3 contribute to the depopulation of W5+ polaronic states, whereas the remaining accumulated holes in WO3 are separated from adjacent electrons in TiO2 up to 3 ms after photoexcitation. The presence of these exceptionally long-lived photogenerated carriers, dynamically separated by the WT heterojunction, is the origin of the superior photocatalytic efficiency displayed by this system (in the degradation of stearic acid). Consequently, our combined computational and experimental approach delivers a robust understanding of the direction of charge separation along with critical time-resolved insights into the evolution of charge transport phenomena in this model heterojunction photocatalyst
    corecore