148 research outputs found

    Optimization of the medium perfusion rate in a packed-bed bioreactor charged with CHO cells

    Get PDF
    In the present study, the optimal medium perfusion rate to be used for the continuous culture of a recombinant CHO cell line in a packed-bed bioreactor made of Fibra-Cel® disk carriers was determined. A first-generation process had originally been designed with a high perfusion rate, in order to rapidly produce material for pre-clinical and early clinical trials. It was originally operated with a perfusion of 2.6vvd during production phase in order to supply the high cell density (2.5×107cellml−1 of packed-bed) with sufficient fresh medium. In order to improve the economics of this process, a reduction of the medium perfusion rate by −25% and −50% was investigated at small-scale. The best option was then implemented at pilot scale in order to further produce material for clinical trials with an improved second-generation process. With a −25% reduction of the perfusion rate, the volumetric productivity was maintained compared to the first-generation process, but a −30% loss of productivity was obtained when the medium perfusion rate was further reduced to −50% of its original level. The protein quality under reduced perfusion rate conditions was analyzed for purity, N-glycan sialylation level, abundance of dimers or aggregates, and showed that the quality of the final drug substance was comparable to that obtained in reference conditions. Finally, a reduction of −25% medium perfusion was implemented at pilot scale in the second-generation process, which enabled to maintain the same productivity and the same quality of the molecule, while reducing costs of media, material and manpower of the production process. For industrial applications, it is recommended to test whether and how far the perfusion rate can be decreased during the production phase - provided that the product is not sensitive to residence time - with the benefits of reduced cost of goods and to simplify manufacturing operation

    Predatory Bacteria: A Potential Ally against Multidrug-Resistant Gram-Negative Pathogens

    Get PDF
    Multidrug-resistant (MDR) Gram-negative bacteria have emerged as a serious threat to human and animal health. Bdellovibrio spp. and Micavibrio spp. are Gram-negative bacteria that prey on other Gram-negative bacteria. In this study, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on MDR Gram-negative clinical strains was examined. Although the potential use of predatory bacteria to attack MDR pathogens has been suggested, the data supporting these claims is lacking. By conducting predation experiments we have established that predatory bacteria have the capacity to attack clinical strains of a variety of ß-lactamase-producing, MDR Gram-negative bacteria. Our observations indicate that predatory bacteria maintained their ability to prey on MDR bacteria regardless of their antimicrobial resistance, hence, might be used as therapeutic agents where other antimicrobial drugs fail. © 2013 Kadouri et al

    Optimization of the medium perfusion rate in a packed-bed bioreactor charged with CHO cells

    Get PDF
    In the present study, the optimal medium perfusion rate to be used for the continuous culture of a recombinant CHO cell line in a packed-bed bioreactor made of Fibra-Cel disk carriers was detd. A first-generation process had originally been designed with a high perfusion rate, in order to rapidly produce material for pre-clin. and early clin. trials. It was originally operated with a perfusion of 2.6 vvd during prodn. phase in order to supply the high cell d. (.apprx.2.5*107 cell ml-1 of packed-bed) with sufficient fresh medium. In order to improve the economics of this process, a redn. of the medium perfusion rate by -25% and -50% was investigated at small-scale. The best option was then implemented at pilot scale in order to further produce material for clin. trials with an improved second-generation process. With a -25% redn. of the perfusion rate, the volumetric productivity was maintained compared to the first-generation process, but a -30% loss of productivity was obtained when the medium perfusion rate was further reduced to -50% of its original level. The protein quality under reduced perfusion rate conditions was analyzed for purity, N-glycan sialylation level, abundance of dimers or aggregates, and showed that the quality of the final drug substance was comparable to that obtained in ref. conditions. Finally, a redn. of -25% medium perfusion was implemented at pilot scale in the second-generation process, which enabled to maintain the same productivity and the same quality of the mol., while reducing costs of media, material and manpower of the prodn. process. For industrial applications, it is recommended to test whether and how far the perfusion rate can be decreased during the prodn. phase - provided that the product is not sensitive to residence time - with the benefits of reduced cost of goods and to simplify manufg. operations. [on SciFinder (R)

    Association of the I1307K APC mutation with hereditary and sporadic breast/ovarian cancer: more questions than answers

    Get PDF
    The frequency of the APC I1307K mutation and its association with disease pattern was examined in 996 Ashkenazi women consisting of individuals with either sporadic (n = 382) or hereditary (n = 143) breast and/or ovarian cancer; asymptomatic BRCA1/2 mutation carriers (185delAG, 5382insC and 6174delT) (n = 53) and healthy controls (n = 418). The I1307K allele was equally distributed among women with sporadic (17/382; 4.6%) and inherited (10/143; 7%) breast and/or ovarian cancer irrespective of their being diagnosed before or after 42 years of age and among asymptomatic (7/53; 13.2%) and cancer manifesting BRCA1/2 carriers (10/143; 7%). Taken together, the prevalence of the I1307K allele was significantly higher in BRCA1/2 carriers compared to non-BRCA1/2 carriers (17/196; 8.7% and 40/800, 5%; respectively). The high prevalence of the I1307K allele among BRCA1/2 carriers is not associated with increased cancer risk but seems to be genetically connected because of Jewish ancestry. © 2000 Cancer Research Campaig

    Switching the stereochemical outcome of 6-endo-trig cyclizations; Synthesis of 2,6-Cis-6-substituted 4-oxopipecolic acids

    Get PDF
    A base-mediated 6-endo-trig cyclization of readily accessible enone-derived α-amino acids has been developed for the direct synthesis of novel 2,6-cis-6- substituted-4-oxo-L-pipecolic acids. A range of aliphatic and aryl side chains were tolerated by this mild procedure to give the target compounds in good overall yields. Molecular modeling of the 6-endo-trig cyclization allowed some insight as to how these compounds were formed, with the enolate intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-L-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed

    An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections

    Get PDF
    Ocular infections are a leading cause of vision loss. It has been previously suggested that predatory prokaryotes might be used as live antibiotics to control infections. In this study, Pseudomonas aeruginosa and Serratia marcescens ocular isolates were exposed to the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. All tested S. marcescens isolates were susceptible to predation by B. bacteriovorus strains 109J and HD100. Seven of the 10 P. aeruginosa isolates were susceptible to predation by B. bacteriovorus 109J with 80% being attacked by M. aeruginosavorus. All of the 19 tested isolates were found to be sensitive to at least one predator. To further investigate the effect of the predators on eukaryotic cells, human corneal-limbal epithelial (HCLE) cells were exposed to high concentrations of the predators. Cytotoxicity assays demonstrated that predatory bacteria do not damage ocular surface cells in vitro whereas the P. aeruginosa used as a positive control was highly toxic. Furthermore, no increase in the production of the proinflammatory cytokines IL-8 and TNF-alpha was measured in HCLE cells after exposure to the predators. Finally, injection of high concentration of predatory bacteria into the hemocoel of Galleria mellonella, an established model system used to study microbial pathogenesis, did not result in any measurable negative effect to the host. Our results suggest that predatory bacteria could be considered in the near future as a safe topical bio-control agent to treat ocular infections. © 2013 Shanks et al

    Investigating the Responses of Human Epithelial Cells to Predatory Bacteria

    Get PDF
    One beguiling alternative to antibiotics for treating multi-drug resistant infections are Bdellovibrio-and-like-organisms (BALOs), predatory bacteria known to attack human pathogens. Consequently, in this study, the responses from four cell lines (three human and one mouse) were characterized during an exposure to different predatory bacteria, Bdellovibrio bacteriovorus HD100, Bacteriovorus BY1 and Bacteriovorax stolpii EB1. TNF-alpha levels were induced in Raw 264.7 mouse macrophage cultures with each predator, but paled in comparison to those obtained with E. coli. This was true even though the latter strain was added at an 11.1-fold lower concentration (p < 0.01). Likewise, E. coli led to a significant (54%) loss in the Raw 264.7 murine macrophage viability while the predatory strains had no impact. Tests with various epithelial cells, including NuLi-1 airway, Caco2, HT29 and T84 colorectal cells, gave similar results, with E. coli inducing IL-8 production. The viabilities of the NuLi-1 and Caco-2 cells were slightly reduced (8%) when exposed to the predators, while T84 viability remained steady. In no cases did the predatory bacteria induce actin rearrangement. These results clearly demonstrate the gentle natures of predatory bacteria and their impacts on human cells.ope

    Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells

    Get PDF
    Bdellovibrio bacteriovorus HD100 is a predatory bacterium that attacks many Gram-negative human pathogens. A serious drawback of this strain, however, is its ineffectiveness against Gram-positive strains, such as the human pathogen Staphylococcus aureus. Here we demonstrate that the extracellular proteases produced by a host-independent B. bacteriovorus (HIB) effectively degrade/inhibit the formation of S. aureus biofilms and reduce its virulence. A 10% addition of HIB supernatant caused a 75% or greater reduction in S. aureus biofilm formation as well as 75% dispersal of pre-formed biofilms. LC-MS-MS analyses identified various B. bacteriovorus proteases within the supernatant, including the serine proteases Bd2269 and Bd2321. Tests with AEBSF confirmed that serine proteases were active in the supernatant and that they impacted S. aureus biofilm formation. The supernatant also possessed a slight DNAse activity. Furthermore, treatment of planktonic S. aureus with the supernatant diminished its ability to invade MCF-10a epithelial cells by 5-fold but did not affect the MCF-10a viability. In conclusion, this study illustrates the hitherto unknown ability of B. bacteriovorus to disperse Gram-positive pathogenic biofilms and mitigate their virulence.open6
    corecore