2,653 research outputs found

    New constraints on the observable inflaton potential from WMAP and SDSS

    Get PDF
    We derive some new constraints on single-field inflation from the Wilkinson Microwave Anisotropy Probe 3-year data combined with the Sloan Luminous Red Galaxy survey. Our work differs from previous analyses by focusing only on the observable part of the inflaton potential, or in other words, by making absolutely no assumption about extrapolation of the potential from its observable region to its minimum (i.e., about the branch of the potential responsible for the last ~50 inflationary e-folds). We only assume that inflation starts at least a few e-folds before the observable Universe leaves the Hubble radius, and that the inflaton rolls down a monotonic and regular potential, with no sharp features or phase transitions. We Taylor-expand the inflaton potential at order v=2, 3 or 4 in the vicinity of the pivot scale, compute the primordial spectra of scalar and tensor perturbations numerically and fit the data. For v>2, a large fraction of the allowed models is found to produce a large negative running of the scalar tilt, and to fall in a region of parameter space where the second-order slow-roll formalism is strongly inaccurate. We release a code for the computation of inflationary perturbations which is compatible with CosmoMC.Comment: 10 pages, 6 figures, codes available at http://wwwlapp.in2p3.fr/~lesgourgues/inflation/. Version to be published in Phys.Rev.

    Quantum Antiferromagnetism in Quasicrystals

    Full text link
    The antiferromagnetic Heisenberg model is studied on a two-dimensional bipartite quasiperiodic lattice. The distribution of local staggered magnetic moments is determined on finite square approximants with up to 1393 sites, using the Stochastic Series Expansion Quantum Monte Carlo method. A non-trivial inhomogeneous ground state is found. For a given local coordination number, the values of the magnetic moments are spread out, reflecting the fact that no two sites in a quasicrystal are identical. A hierarchical structure in the values of the moments is observed which arises from the self-similarity of the quasiperiodic lattice. Furthermore, the computed spin structure factor shows antiferromagnetic modulations that can be measured in neutron scattering and nuclear magnetic resonance experiments. This generic model is a first step towards understanding magnetic quasicrystals such as the recently discovered Zn-Mg-Ho icosahedral structure.Comment: RevTex, 4 pages with 5 figure

    Quantification of the distal radial artery for improved vascular access

    Get PDF
    Background: There is no consensus in the literature as to which point of the radial artery (RA) is the safest to attempt vascular access. The purpose of this study was to measure the diameter, tortuosity and branching patterns of the distal RA. Materials and methods: 140 cadaveric RAs (66 male, 74 female) were dissected and measured. The external diameter of the RA was measured at 2 cm increments starting at the radial styloid process (SP), moving proximally. The location and degree of 2-dimensional arterial tortuosity were recorded if > 35 degrees. Branches of the RA were recorded with respect to their distance from the SP. Results: We observed that the right RA significantly increased in diameter at distances beyond 4 cm proximal from the radial SP, regardless of the sex of the individual. This increase in size was not noted on the left RA’s. Muscular artery branches of the distal RA were noted on average 1.82 cm proximal from the SP. Clinically significant tortuosity was present on average 3.47 cm proximal from the radial SP. The left RA did not significantly change in size along its course, but its statistically similar diameter when compared to the right RA allows us to make a recommendation this is applicable bilaterally. Conclusions: Our data suggests that regardless of gender, vascular access of the RA could be safely performed at distances greater than 4 cm from the SP to yield a vessel with a larger diameter, less tortuosity, and fewer branches

    Synchronization from Disordered Driving Forces in Arrays of Coupled Oscillators

    Full text link
    The effects of disorder in external forces on the dynamical behavior of coupled nonlinear oscillator networks are studied. When driven synchronously, i.e., all driving forces have the same phase, the networks display chaotic dynamics. We show that random phases in the driving forces result in regular, periodic network behavior. Intermediate phase disorder can produce network synchrony. Specifically, there is an optimal amount of phase disorder, which can induce the highest level of synchrony. These results demonstrate that the spatiotemporal structure of external influences can control chaos and lead to synchronization in nonlinear systems.Comment: 4 pages, 4 figure

    Frustrated trimer chain model and Cu3Cl6(H2O)2 2H8C4SO2 in a magnetic field

    Full text link
    Recent magnetization and susceptibility measurements on Cu3Cl6(H2O)2 2H8C4SO2 by Ishii et.al. [J. Phys. Soc. Jpn. 69, 340 (2000)] have demonstrated the existence of a spin gap. In order to explain the opening of a spin gap in this copper-trimer system, Ishii et.al. have proposed a frustrated trimer chain model. Since the exchange constants for this model have not yet been determined, we develop a twelfth-order high-temperature series for the magnetic susceptibility and fit it to the experimentally measured one. We find that some of the coupling constants are likely to be ferromagnetic. The combination of several arguments does not provide any evidence for a spin gap in the parameter region with ferromagnetic coupling constants, but further results e.g. for the magnetization process are in qualitative agreement with the experimental observations.Comment: 9 pages REVTeX, 4 PostScript figures included using psfig.sty; for series and supplementary material see http://www.tu-bs.de/~honecker/3mer/ or http://www.itp.phys.ethz.ch/staff/laeuchli/3mer ; substantial reorganization including shifting part of the discussion to WWW pages with "supplementary material"; new appendix shows that antiferromagnetic J_i > 0 are not compatible with the experimental data for the magnetic susceptibilit

    Variability in the anterior extralaryngeal branch of the recurrent laryngeal nerve: clinical implications

    Get PDF
    Background: This study aimed to identify the anterior and posterior extralaryngeal branches (AELB, PELB) of the recurrent laryngeal nerve (RLN), measure these branches when present, and determine relationships between gender, sidedness and neck length. Materials and methods: Dissection was completed to level of the thyroid on 45 cadavers. The course of the RLN was then traced superiorly from its entry into the neck. Careful reflection of the thyroid and dissection of the lateral thyroid ligament permitted visualisation of the full course of the nerve. If extralaryngeal branching (ELB) was present, measurements were taken from the point of bifurcation of the RLN to the point of laryngeal entry through the cricothyroid membrane. Neck measurements, from the spinous process of C7 to the superior nuchal line, were taken. Gender of the specimen was noted. Data was analysed in SPSS. Results: Extralaryngeal branching was found in 77.78% of our sample, 77.14% on the left and 54.29% on the right. A significant difference was found between AELB length on the left and right, indicating that the left branch will be longer than the right when present. A significant difference in neck length between those with and without ELB was also found, indicating that people with longer necks more often display ELB. Neither neck length and AELB length, nor gender and AELB length were strongly correlated in this sample. Conclusions: Extralaryngeal branching can occur in all populations, but there are definite trends in its incidence and length. Surgeons should be aware of these trends before operating on patients

    Field-Induced Magnetic Order in Quantum Spin Liquids

    Full text link
    We study magnetic field-induced three-dimensional ordering transitions in low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion quantum Monte Carlo simulations, thermodynamic response functions are obtained down to ultra-low temperatures. We extract the critical scaling exponents which dictate the power-law dependence of the transition temperature on the applied magnetic field. These are compared with recent experiments on candidate materials and with predictions for the Bose-Einstein condensation of magnons obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure

    Towards precision medicine for pain: diagnostic biomarkers and repurposed drugs

    Get PDF
    We endeavored to identify objective blood biomarkers for pain, a subjective sensation with a biological basis, using a stepwise discovery, prioritization, validation, and testing in independent cohorts design. We studied psychiatric patients, a high risk group for co-morbid pain disorders and increased perception of pain. For discovery, we used a powerful within-subject longitudinal design. We were successful in identifying blood gene expression biomarkers that were predictive of pain state, and of future emergency department (ED) visits for pain, more so when personalized by gender and diagnosis. MFAP3, which had no prior evidence in the literature for involvement in pain, had the most robust empirical evidence from our discovery and validation steps, and was a strong predictor for pain in the independent cohorts, particularly in females and males with PTSD. Other biomarkers with best overall convergent functional evidence for involvement in pain were GNG7, CNTN1, LY9, CCDC144B, and GBP1. Some of the individual biomarkers identified are targets of existing drugs. Moreover, the biomarker gene expression signatures were used for bioinformatic drug repurposing analyses, yielding leads for possible new drug candidates such as SC-560 (an NSAID), and amoxapine (an antidepressant), as well as natural compounds such as pyridoxine (vitamin B6), cyanocobalamin (vitamin B12), and apigenin (a plant flavonoid). Our work may help mitigate the diagnostic and treatment dilemmas that have contributed to the current opioid epidemic

    Synchronization in a neuronal feedback loop through asymmetric temporal delays

    Full text link
    We consider the effect of asymmetric temporal delays in a system of two coupled Hopfield neurons. For couplings of opposite signs, a limit cycle emerges via a supercritical Hopf bifurcation when the sum of the delays reaches a critical value. We show that the angular frequency of the limit cycle is independent of an asymmetry in the delays. However, the delay asymmetry determines the phase difference between the periodic activities of the two components. Specifically, when the connection with negative coupling has a delay much larger than the delay for the positive coupling, the system approaches in-phase synchrony between the two components. Employing variational perturbation theory (VPT), we achieve an approximate analytical evaluation of the phase shift, in good agreement with numerical results.Comment: 5 pages, 4 figure

    Dimer-Quadrupolar Quantum Phase Transition in the Quasi-One-Dimensional Heisenberg Model with Biquadratic Interaction

    Full text link
    The quasi-one-dimensional S=1 Heisenberg antiferromagnet with a biquadratic term is investigated at zero temperature by quantum Monte Carlo simulation. As the magnitude of the inter-chain coupling is increased, the system undergoes a phase transition from a spontaneously dimerized phase to a N\'eel ordered or spin nematic phase. The numerical results suggest the possibility of an unconventional second-order transition in which the symmetry group characterizing one phase is not a subgroup of the other.Comment: 4 pages, 4 figure
    • …
    corecore