1,781 research outputs found

    Quantum Phase Transition from a Spin-liquid State to a Spin-glass State in the Quasi-1D Spin-1 System Sr1-xCaxNi2V2O8

    Full text link
    We report a quantum phase transition from a spin-liquid state to a spin-glass state in the quasi-one dimensional (1D) spin-1 system Sr1-xCaxNi2V2O8, induced by a small amount of Ca-substitution at Sr site. The ground state of the parent compound (x = 0) is found to be a spin-liquid type with a finite energy gap of 26.6 K between singlet ground state and triplet excited state. Both dc-magnetization and ac-susceptibility studies on the highest Ca-substituted compound (x = 0.05) indicate a spin-glass type magnetic ground state. With increasing Ca-concentration, the spin-glass ordering temperature increases from 4.5 K (for the x = 0.015 compound) to 6.25 K (for the x = 0.05 compound). The observed results are discussed in the light of the earlier experimental reports and the theoretical predictions for a quasi-1D spin-1 system.Comment: 26 pages, 8 figures, 3 table

    Enhanced Raman and photoluminescence response in monolayer MoS2_2 due to laser healing of defects

    Full text link
    Bound quasiparticles, negatively charged trions and neutral excitons, are associated with the direct optical transitions at the K-points of the Brillouin zone for monolayer MoS2_2. The change in the carrier concentration, surrounding dielectric constant and defect concentration can modulate the photoluminescence and Raman spectra. Here we show that exposing the monolayer MoS2_2 in air to a modest laser intensity for a brief period of time enhances simultaneously the photoluminescence (PL) intensity associated with both trions and excitons, together with \sim 3 to 5 times increase of the Raman intensity of first and second order modes. The simultaneous increase of PL from trions and excitons cannot be understood based only on known-scenario of depletion of electron concentration in MoS2_2 by adsorption of O2_2 and H2_2O molecules. This is explained by laser induced healing of defect states resulting in reduction of non-radiative Auger processes. This laser healing is corroborated by an observed increase of intensity of both the first order and second order 2LA(M) Raman modes by a factor of \sim 3 to 5. The A1g_{1g} mode hardens by \sim 1.4 cm1^{-1} whereas the E2g1^1_{2g} mode softens by \sim 1 cm1^{-1}. The second order 2LA(M) Raman mode at \sim 440 cm1^{-1} shows an increase in wavenumber by \sim 8 cm1^{-1} with laser exposure. These changes are a combined effect of change in electron concentrations and oxygen-induced lattice displacements.Comment: 15 pages, 5 figures, Journal of Raman Spectroscopy, 201

    Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrM2M_2V2_2O8_8 (MM = Co, Mn)

    Full text link
    Magnetic correlations of two iso-structural quasi-one-dimensional (1D) antiferromagnetic spin-chain compounds SrM2M_2V2_2O8_8 (MM = Co, Mn) have been investigated by magnetization and powder neutron diffraction. Two different collinear antiferromagnetic (AFM) structures, characterized by the propagation vectors, kk = (0 0 1) and kk = (0 0 0), have been found below \sim 5.2 K and \sim 42.2 K for the Co- and Mn-compounds, respectively. For the Mn-compound, AFM chains (along the cc axis) order ferromagnetically within the abab plane, whereas, for the Co-compound, AFM chains order ferro-/antiferromagnetically along the a/ba/b direction. The critical exponent study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg universality classes, respectively. For both compounds, short-range spin-spin correlations are present over a wide temperature range above TNT_N. The reduced ordered moments at base temperature (1.5 K) indicate the presence of quantum fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table

    Long-range and short-range magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14

    Full text link
    Spin-spin correlations and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14 have been investigated by powder neutron diffraction. The present study reveals a 3D long-range magnetic ordering below 16 K where the magnetic structure consists of ferromagnetic trimers that are coupled ferromagnetically along the spin-chain. The moment components along the a and c axes arrange antiferromagnetically. Our study establishes that the uncompensated moment components along the b axis result in a net magnetization per unit cell. The magnetic structure, determined in the present study, is in agreement with the results of recent first principles calculation; however, it is in contrast to a fascinating experimental prediction of ferrimagnetic ordering based on the periodicity of the exchange interactions in CaNi3P4O14. Our study also confirms the presence of broad diffuse magnetic scattering, due to 1D short-range spin-spin correlations, over a wide temperature range below ~50 K down to a temperature well below the Tc. Total neutron scattering analysis by the RMC method reveals that the dominating spin-spin correlation above Tc is ferromagnetic and along the b axis. The nearest neighbour spin-spin correlations along the a and c axes are found to be weakly antiferromagnetic. The nature of the trimer spin structure of the short-range state is similar to that of the 3D long-range ordered state. The present investigation of microscopic nature of the magnetic ground state also explains the condition required for the 1/3 magnetization plateau to be observed in the trimer spin-chains. In spite of the S=1 trimer chain system, the present compound CaNi3P4O14 is found to be a good realization of 3D magnet below the Tc=16 K with full ordered moment values of ~2 mu_B/Ni2+ (1.98 and 1.96 mu_B/Ni2+ for two Ni sites, respectively) at 1.5 K.Comment: 10 pages, 8 figure
    corecore