18 research outputs found
Comparative evaluation of water budgeting parameters under different rice (Oryza sativa L.) cultivation methods
Water budgeting studies under different rice cultivation methods provides an insight into the amount of water used by the plant and percolated below the root zone for judicious water management. To undertake this study, a field experiment was conducted to estimate different soil water balance parameters under three rice (Oryza sativa L.) cultivation methods viz. Direct Seeded Rice (DSR), System of Rice Intensification (SRI) and Conventional Puddled Rice (CPR). The experiment was conducted during kharif 2013 and kharif 2014 season at research farm of Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India. In this study, the rainfall and irrigation depth, Crop Evapotranspiration (ETc), percolation beyond root zone of the crop and surface runoff during the crop growth period were accounted in water budgeting. It was observed that the percolation be-yond root zone of the crop was the highest under CPR method amounting 963 mm and 831 mm, which was about 55% and 58% of total water applied during 2013 and 2014, respectively. However, the percolation beyond root zone of the crop was the lowest under DSR method of rice cultivation amounting 367 mm and 332 mm which was 43% and 39% of total water applied during 2013 and 2014, respectively. Water loss through Etc was around 30% of total water applied in all three cultivation methods for year 2013. However, it was 59%, 46% and 43% of total water ap-plied for DSR, SRI and CPR, respectively in the year 2014.This indicates more effective utilization of total applied water in the year 2014.The study highlighted that water loss through deep percolation beyond root zone is the major factor contributing to the high water requirement in CPR and SRI methods compare to DSR method. Moreover, different soil water balance components computed in this study will be helpful for estimation of irrigation water requirement in the rice growing areas of the agro-climatic region VI (Trans-gangetic Plains) of India
Evaluation of soft-computing techniques for pan evaporation estimation
Estimation of pan evaporation (Epan)  can be useful in judicious irrigation scheduling for enhancing agricultural water productivity. The aim of  present study was to assess the efficacy of state-of-the-art LSTM and ANN for daily Epan estimation using meteorological data. Besides this, the effect of static time-series (Julian date) as additional input variable was investigated on performance of soft-computing techniques. For this purpose,the models were trained, tested and validated with eight meteorological variables of 37 years by using preceding 1-, 3- and 5- days’ information. Data were partitioned into three groups as training (60%), testing (20%), and validation (20%) components. It was observed that the models performed well (best) with preceding 5-days meteorological information followed by 3-days and 1-day. However, all LSTMs simulated peak value of Epan was more accurate as compared to lower values. Meteorological data with julian date improved the performance of LSTMs (0.75<NSE 1; PBias< 10; KGE 0.75). The ANN trained using only meteorological data (preceding 5-days information) had better performance error statistics among all other ANNs and LSTMs with minimum MAE (0.68 to 0.86), RMSE (0.93 to 1.22), PBias (-0.73 to 2.44) and maximum NSE (0.83 to 0.84) and KGE (0.89 to 0.92). Overall, it was inferred that the forecasting of meteorological parameters using a few days preceding information along with Julian date as the time series variables resulted in better estimation of Epan for the study region
Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2
Deletion of the human SHANK3 gene near the terminus of chromosome 22q is associated with Phelan-McDermid syndrome and autism spectrum disorders. Nearly all such deletions also span the tightly linked IB2 gene. We show here that IB2 protein is broadly expressed in the brain and is highly enriched within postsynaptic densities. Experimental disruption of the IB2 gene in mice reduces AMPA and enhances NMDA receptor-mediated glutamatergic transmission in cerebellum, changes the morphology of Purkinje cell dendritic arbors, and induces motor and cognitive deficits suggesting an autism phenotype. These findings support a role for human IB2 mutation as a contributing genetic factor in Chr22qter-associated cognitive disorder