25 research outputs found

    A construction method of Atanassov’s intuitionistic fuzzy sets for image processing

    Full text link
    In this work we introduce a new construction method of Atanassov\u27s intuitionistic fuzzy sets (A-IFSs) from fuzzy sets. We use A-IFSs in image processing. We propose a new image magnification algorithm using A-IFSs. This algorithm is characterized by its simplicity and its efficiency

    One image reduction algorithm for RGB color images

    Full text link
    We investigate the problem of combining or aggregating several color values given in coding scheme RGB. For this reason, we study the problem of averaging values on lattices, and in particular on discrete product lattices. We study the arithemtic mean and the median on product lattices. We apply these aggregation functions in image reduction and we present a new algorithm based on the minimization of penalty functions on discrete product lattices

    Type-2 Fuzzy Entropy-Sets

    Get PDF
    The final goal of this study is to adapt the concept of fuzzy entropy of De Luca and Termini to deal with Type-2 Fuzzy Sets. We denote this concept Type-2 Fuzzy Entropy-Set. However, the construction of the notion of entropy measure on an infinite set, such us [0, 1], is not effortless. For this reason, we first introduce the concept of quasi-entropy of a Fuzzy Set on the universe [0, 1]. Furthermore, whenever the membership function of the considered Fuzzy Set in the universe [0, 1] is continuous, we prove that the quasi-entropy of that set is a fuzzy entropy in the sense of De Luca y Termini. Finally, we present an illustrative example where we use Type-2 Fuzzy Entropy-Sets instead of fuzzy entropies in a classical fuzzy algorithm

    Construction of Capacities from Overlap Indexes

    Get PDF
    In many problems, it is crucial to find a relation between groups of data. Such relation can be expressed, for instance, in terms of an appropriate fuzzy measure or capacity([10, 21]) which reflects the way the different data are connected to each other [20]. In this chapter, taking into account this fact and following the developments in [8],we introduce a method to build capacities ([20, 21]) directly from the data (inputs) of a given problem. In order to do so, we make use of the notions of overlap function and overlap index ([5, 12, 13, 7, 4, 14, 16]) for constructing capacities which reflect how different data are related to each other. This paper is organized as follows: after providing some preliminaries, we analyse, in Section 3, some properties of overlap functions and indexes. In Sections 4 we discuss a method for constructing capacities from overlap functions and overlap indexes. Finally, we present some conclusions and references

    Image reduction operators as aggregation functions: Fuzzy transform and undersampling

    Full text link
    corecore