573 research outputs found

    Gravitational Collapse in One Dimension

    Full text link
    We simulate the evolution of one-dimensional gravitating collisionless systems from non- equilibrium initial conditions, similar to the conditions that lead to the formation of dark- matter halos in three dimensions. As in the case of 3D halo formation we find that initially cold, nearly homogeneous particle distributions collapse to approach a final equilibrium state with a universal density profile. At small radii, this attractor exhibits a power-law behavior in density, {\rho}(x) \propto |x|^(-{\gamma}_crit), {\gamma}_crit \simeq 0.47, slightly but significantly shallower than the value {\gamma} = 1/2 suggested previously. This state develops from the initial conditions through a process of phase mixing and violent relaxation. This process preserves the energy ranks of particles. By warming the initial conditions, we illustrate a cross-over from this power-law final state to a final state containing a homogeneous core. We further show that inhomogeneous but cold power-law initial conditions, with initial exponent {\gamma}_i > {\gamma}_crit, do not evolve toward the attractor but reach a final state that retains their original power-law behavior in the interior of the profile, indicating a bifurcation in the final state as a function of the initial exponent. Our results rely on a high-fidelity event-driven simulation technique.Comment: 14 Pages, 13 Figures. Submitted to MNRA

    Sparticle Spectrum and Dark Matter in M-Theory

    Get PDF
    The phenomenological implications of the eleven dimensional limit of MM-theory (strongly coupled E8Ă—E8E_8\times E_8) are investigated. In particular we calculate the supersymmetric spectrum subject to constraints of correct electroweak symmetry breaking and the requirement that the lighest supersymmetric particle provides the dark matter of the universe. The BB-soft term associated with the generation of a ÎĽ\mu term in the superpotential is calculated and its phenomenology is discussed.Comment: LaTeX file 15 pages,1 figure adde

    Elastic Waves Scattering from Corrugated Metal Interfaces

    Get PDF
    This is a study of elastic waves diffracted by corrugated metallic surfaces. The corrugations consist of triangular grooves with variable parameters. The results of the narrow band experiments show significant diffraction patterns depending on angle and frequency. In addition, a continuous schlieren system is used to visualize the diffracted orders. Measurements were also carried out using a broadband pulse echo system. The behavior of the received spectra is characteristic of the surface profile. Both front and back surfaces have been investigated

    Nonexistence theorems for traversable wormholes

    Full text link
    Gauss-Bonnet formula is used to derive a new and simple theorem of nonexistence of vacuum static nonsingular lorentzian wormholes. We also derive simple proofs for the nonexistence of lorentzian wormhole solutions for some classes of static matter such as, for instance, real scalar fields with a generic potential obeying ϕV′(ϕ)≥0\phi V'(\phi) \ge 0 and massless fermions fields

    Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules

    Full text link
    The National Ignition Facility (NIF) technology is designed to drive deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fue l and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. In this Letter we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy β\beta-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix

    Detecting an Invisibly Decaying Higgs Boson at a Hadron Supercollider

    Get PDF
    We demonstrate that an invisibly decaying Higgs boson with Standard Model coupling strength to top--anti-top can be detected at the LHC for masses up to about 250 GeV.Comment: 7 pages, requires phyzzx.tex and tables.tex, revised to convert results from SSC to LHC and include additional top quark mass cases, full postscript file including embedded figure available via anonymous ftp at ucdhep.ucdavis.edu as [anonymous.gunion]hinvisible_revised.ps, preprint UCD-93-2

    Using the acoustic peak to measure cosmological parameters

    Get PDF
    Recent measurements of the cosmic microwave background radiation by the Boomerang experiment indicate that the universe is spatially flat. Here some simple back-of-the-envelope calculations are used to explain their result. The main result is a simple formula for the angular scale of the acoustic peak in terms of the standard cosmological parameters: l=193*[1+3(1-Omega_0)/5+(1-h)/5+Omega_Lambda/35].Comment: 4 pages, 1 figure, Explanations have been clarifie

    The Inflationary Perturbation Spectrum

    Get PDF
    Motivated by the prospect of testing inflation from precision cosmic microwave background observations, we present analytic results for scalar and tensor perturbations in single-field inflation models based on the application of uniform approximations. This technique is systematically improvable, possesses controlled error bounds, and does not rely on assuming the slow-roll parameters to be constant. We provide closed-form expressions for the power spectra and the corresponding scalar and tensor spectral indices.Comment: 4 pages, 1 figur
    • …
    corecore