5 research outputs found

    Rapid Selective Detection of Ascorbic Acid Using Graphene-Based Microfluidic Platform

    Get PDF
    In this paper, we present a compact microfluidic platform for selective detection of ascorbic acid. The microfluidic chip was fabricated by xurography technique with microfluidic channel placed between the silver electrodes. To increase the conductivity of the platform and enhance electron transfer process, a graphene sheet was deposited in the gap between the electrodes. The suspension of tablets with ascorbic acid and a mixture of ascorbic acid and isomalt, a sugar substitute, were injected in the microfluidic channel. Measuring electrical parameters at the silver contacts, it was possible to successfully differentiate ascorbic acid from isomalt. The sensing mechanism of the developed microfluidic platform is based on the increase of the overall conductivity with the increase of the concentration of ascorbic acid, resulting in the decrease of the resistive parameters and increase of the capacitive parameters of the proposed equivalent electrical circuit. The addition of graphene was found to improve the response linearity by 5.28% and lower the limit of detection and quantification by 12%, compared to the reference structure without graphene

    Antioxidant defense in mitochondria during diapause and postdiapause development of European corn borer (Ostrinia nubilalis, Hubn.)

    No full text
    Antioxidant enzymes (CAT, catalase; GPx, selenium nondependent glutathione peroxidase; GST, glutathione-S-transferase; GR, glutathione reductase; DHAR, dehydroascorbate reductase) were determined in the mitochondria of diapausing and non-diapausing larvae and pupae of both diapausing and non-diapausing larvae of the European corn borer (Ostrinia nubilalis, Hubn., Lepidoptera: Pyralidae). CAT, GST, and DHAR activity in mitochondria of diapausing larvae were reduced compared to non-diapausing larvae. Pupae of diapaused-larvae possessed lower GST, but higher DHAR activities compared to pupae of non-diapaused individuals. Comparison between larvae and pupae revealed lower GPx activity in the mitochondria of pupae. CAT activity in the mitochondria of pupae was higher compared to diapausing larvae, but lower than in non-diapausing ones. Correlation and canonical discriminant analyses revealed different antioxidant enzyme compositions for a particular stage and developmental pattern. Our results show that antioxidant enzymes have a similar role in the regulation of energetics in mitochondria as that in diapause and metamorphosis

    Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly

    No full text
    Diapause is a widespread adaptation to seasonality across invertebrate taxa. It is critical for persistence in seasonal environments, synchronizing life histories with favorable, resource-rich conditions and mitigating exposure to harsh environments. Despite some promising recent progress, however, we still know very little about the molecular modifications underlying diapause. We used transcriptional profiling to identify key groups of genes and pathways differentially regulated during pupal diapause, dynamically regulated across diapause development, and differentially regulated after diapause was pharmacologically terminated in the flesh fly Sarcophaga crassipalpis. We describe major shifts in stress axes, endocrine signaling, and metabolism that accompany diapause, several of which appear to be common features of dormancy in other taxa. To assess whether invertebrates with different diapause strategies have converged toward similar transcriptional profiles, we use archived expression data to compare the pupal diapause of S. crassipalpis with the adult reproductive diapause of Drosophila melanogaster and the larval dauer of Caenorhabditis elegans. Although dormant invertebrates converge on a few similar physiological phenotypes including metabolic depression and stress resistance, we find little transcriptional similarity among dormancies across species, suggesting that there may be many transcriptional strategies for producing physiologically similar dormancy responses
    corecore