50 research outputs found
Disordered, stretched, and semiflexible biopolymers in two dimensions
We study the effects of intrinsic sequence-dependent curvature for a two
dimensional semiflexible biopolymer with short-range correlation in intrinsic
curvatures. We show exactly that when not subjected to any external force, such
a system is equivalent to a system with a well-defined intrinsic curvature and
a proper renormalized persistence length. We find the exact expression for the
distribution function of the equivalent system. However, we show that such an
equivalent system does not always exist for the polymer subjected to an
external force. We find that under an external force, the effect of
sequence-disorder depends upon the averaging order, the degree of disorder, and
the experimental conditions, such as the boundary conditions. Furthermore, a
short to moderate length biopolymer may be much softer or has a smaller
apparent persistent length than what would be expected from the "equivalent
system". Moreover, under a strong stretching force and for a long biopolymer,
the sequence-disorder is immaterial for elasticity. Finally, the effect of
sequence-disorder may depend upon the quantity considered
A model for gelation with explicit solvent effects: Structure and dynamics
We study a two-component model for gelation consisting of -functional
monomers (the gel) and inert particles (the solvent). After equilibration as a
simple liquid, the gel particles are gradually crosslinked to each other until
the desired number of crosslinks has been attained. At a critical crosslink
density the largest gel cluster percolates and an amorphous solid forms. This
percolation process is different from ordinary lattice or continuum percolation
of a single species in the sense that the critical exponents are new. As the
crosslink density approaches its critical value , the shear viscosity
diverges: with a nonuniversal
concentration-dependent exponent.Comment: 6 pages, 9 figure
Generalized stacking fault energy surfaces and dislocation properties of aluminum
We have employed the semidiscrete variational generalized Peierls-Nabarro
model to study the dislocation core properties of aluminum. The generalized
stacking fault energy surfaces entering the model are calculated by using
first-principles Density Functional Theory (DFT) with pseudopotentials and the
embedded atom method (EAM). Various core properties, including the core width,
splitting behavior, energetics and Peierls stress for different dislocations
have been investigated. The correlation between the core energetics and
dislocation character has been explored. Our results reveal a simple
relationship between the Peierls stress and the ratio between the core width
and atomic spacing. The dependence of the core properties on the two methods
for calculating the total energy (DFT vs. EAM) has been examined. The EAM can
give gross trends for various dislocation properties but fails to predict the
finer core structures, which in turn can affect the Peierls stress
significantly (about one order of magnitude).Comment: 25 pages, 12 figure
Vicinal Surfaces and the Calogero-Sutherland Model
A miscut (vicinal) crystal surface can be regarded as an array of meandering
but non-crossing steps. Interactions between the steps are shown to induce a
faceting transition of the surface between a homogeneous Luttinger liquid state
and a low-temperature regime consisting of local step clusters in coexistence
with ideal facets. This morphological transition is governed by a hitherto
neglected critical line of the well-known Calogero-Sutherland model. Its exact
solution yields expressions for measurable quantities that compare favorably
with recent experiments on Si surfaces.Comment: 4 pages, revtex, 2 figures (.eps
Viscoelasticity near the gel-point: a molecular dynamics study
We report on extensive molecular dynamics simulations on systems of soft
spheres of functionality f, i.e. particles that are capable of bonding
irreversibly with a maximum of f other particles. These bonds are randomly
distributed throughout the system and imposed with probability p. At a critical
concentration of bonds, p_c approximately equal to 0.2488 for f=6, a gel is
formed and the shear viscosity \eta diverges according to \eta ~ (p_c-p)^{-s}.
We find s is approximately 0.7 in agreement with some experiments and with a
recent theoretical prediction based on Rouse dynamics of phantom chains. The
diffusion constant decreases as the gel point is approached but does not
display a well-defined power law.Comment: 4 pages, 4 figure
Dislocation Kinks in Copper: Widths, Barriers, Effective Masses, and Quantum Tunneling
We calculate the widths, migration barriers, effective masses, and quantum
tunneling rates of kinks and jogs in extended screw dislocations in copper,
using an effective medium theory interatomic potential. The energy barriers and
effective masses for moving a unit jog one lattice constant are close to
typical atomic energies and masses: tunneling will be rare. The energy barriers
and effective masses for the motion of kinks are unexpectedly small due to the
spreading of the kinks over a large number of atoms. The effective masses of
the kinks are so small that quantum fluctuations will be important. We discuss
implications for quantum creep, kink--based tunneling centers, and Kondo
resonances
Using the Wigner-Ibach Surmise to Analyze Terrace-Width Distributions: History, User's Guide, and Advances
A history is given of the applications of the simple expression generalized
from the surmise by Wigner and also by Ibach to extract the strength of the
interaction between steps on a vicinal surface, via the terrace width
distribution (TWD). A concise guide for use with experiments and a summary of
some recent extensions are provided.Comment: 11 pages, 4 figures, reformatted (with revtex) version of refereed
paper for special issue of Applied Physics A entitled "From Surface Science
to Device Physics", in honor of the retirements of Prof. H. Ibach and Prof.
H. L\"ut
Trueness of CAD/CAM digitization with a desktop scanner – an in vitro study
Desktop scanners are devices for digitization of conventional impressions or gypsum casts by indirect Computer-Aided Design/Computer-Assisted Manufacturing (CAD/CAM) in dentistry. The purpose of this in vitro study was: 1, to investigate whether virtual models produced by the extraoral scanner have the same trueness as sectioned casts; and 2, to assess if digitization with an extraoral scanner influences the surface information
Mechanosensitive gating of Kv channels.
K-selective voltage-gated channels (Kv) are multi-conformation bilayer-embedded proteins whose mechanosensitive (MS) Popen(V) implies that at least one conformational transition requires the restructuring of the channel-bilayer interface. Unlike Morris and colleagues, who attributed MS-Kv responses to a cooperative V-dependent closed-closed expansion↔compaction transition near the open state, Mackinnon and colleagues invoke expansion during a V-independent closed↔open transition. With increasing membrane tension, they suggest, the closed↔open equilibrium constant, L, can increase >100-fold, thereby taking steady-state Popen from 0→1; "exquisite sensitivity to small…mechanical perturbations", they state, makes a Kv "as much a mechanosensitive…as…a voltage-dependent channel". Devised to explain successive gK(V) curves in excised patches where tension spontaneously increased until lysis, their L-based model falters in part because of an overlooked IK feature; with recovery from slow inactivation factored in, their g(V) datasets are fully explained by the earlier model (a MS V-dependent closed-closed transition, invariant L≥4). An L-based MS-Kv predicts neither known Kv time courses nor the distinctive MS responses of Kv-ILT. It predicts Kv densities (hence gating charge per V-sensor) several-fold different from established values. If opening depended on elevated tension (L-based model), standard gK(V) operation would be compromised by animal cells' membrane flaccidity. A MS V-dependent transition is, by contrast, unproblematic on all counts. Since these issues bear directly on recent findings that mechanically-modulated Kv channels subtly tune pain-related excitability in peripheral mechanoreceptor neurons we undertook excitability modeling (evoked action potentials). Kvs with MS V-dependent closed-closed transitions produce nuanced mechanically-modulated excitability whereas an L-based MS-Kv yields extreme, possibly excessive (physiologically-speaking) inhibition