22,038 research outputs found

    Characterization and computation of canonical tight windows for Gabor frames

    Full text link
    Let (gnm)n,mZ(g_{nm})_{n,m\in Z} be a Gabor frame for L2(R)L_2(R) for given window gg. We show that the window h0=S1/2gh^0=S^{-1/2} g that generates the canonically associated tight Gabor frame minimizes gh\|g-h\| among all windows hh generating a normalized tight Gabor frame. We present and prove versions of this result in the time domain, the frequency domain, the time-frequency domain, and the Zak transform domain, where in each domain the canonical h0h^0 is expressed using functional calculus for Gabor frame operators. Furthermore, we derive a Wiener-Levy type theorem for rationally oversampled Gabor frames. Finally, a Newton-type method for a fast numerical calculation of \ho is presented. We analyze the convergence behavior of this method and demonstrate the efficiency of the proposed algorithm by some numerical examples

    On Lerch's transcendent and the Gaussian random walk

    Get PDF
    Let X1,X2,...X_1,X_2,... be independent variables, each having a normal distribution with negative mean β<0-\beta<0 and variance 1. We consider the partial sums Sn=X1+...+XnS_n=X_1+...+X_n, with S0=0S_0=0, and refer to the process {Sn:n0}\{S_n:n\geq0\} as the Gaussian random walk. We present explicit expressions for the mean and variance of the maximum M=max{Sn:n0}.M=\max\{S_n:n\geq0\}. These expressions are in terms of Taylor series about β=0\beta=0 with coefficients that involve the Riemann zeta function. Our results extend Kingman's first-order approximation [Proc. Symp. on Congestion Theory (1965) 137--169] of the mean for β0\beta\downarrow0. We build upon the work of Chang and Peres [Ann. Probab. 25 (1997) 787--802], and use Bateman's formulas on Lerch's transcendent and Euler--Maclaurin summation as key ingredients.Comment: Published at http://dx.doi.org/10.1214/105051606000000781 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Adoption as a Social Marker: Innovation Diffusion with Outgroup Aversion

    Get PDF
    Social identities are among the key factors driving behavior in complex societies. Signals of social identity are known to influence individual behaviors in the adoption of innovations. Yet the population-level consequences of identity signaling on the diffusion of innovations are largely unknown. Here we use both analytical and agent-based modeling to consider the spread of a beneficial innovation in a structured population in which there exist two groups who are averse to being mistaken for each other. We investigate the dynamics of adoption and consider the role of structural factors such as demographic skew and communication scale on population-level outcomes. We find that outgroup aversion can lead to adoption being delayed or suppressed in one group, and that population-wide underadoption is common. Comparing the two models, we find that differential adoption can arise due to structural constraints on information flow even in the absence of intrinsic between-group differences in adoption rates. Further, we find that patterns of polarization in adoption at both local and global scales depend on the details of demographic organization and the scale of communication. This research has particular relevance to widely beneficial but identity-relevant products and behaviors, such as green technologies, where overall levels of adoption determine the positive benefits that accrue to society at large.Comment: 26 pages, 10 figure
    corecore