917 research outputs found

    Systematic X-ray absorption study of hole doping in BSCCO - phases

    Full text link
    X-ray absorption spectroscopy (XAS) on the O 1s threshold was applied to Bi-based, single crystalline high temperature superconductors (HTc's), whose hole densities in the CuO2 planes was varied by different methods. XAS gives the intensity of the so-called pre-peak of the O 1s line due to the unoccupied part of the Zhang-Rice (ZR) singlet state. The effects of variation of the number n of CuO2 - planes per unit cell (n = 1,2,3) and the effect of La-substitution for Sr for the n = 1 and n = 2 phase were studied systematically. Furthermore the symmetry of the states could be probed by the polarization of the impinging radiation.Comment: 4 pages, 2 figures, to appear in the proceedings of SCES2001, Ann Arbor, August 6-10, 200

    Natural linewidth analysis of d-band photoemission from Ag(110)

    Full text link
    We report a high-resolution angle-resolved study of photoemission linewidths observed for Ag(110). A careful data analysis yields k−resolvedupperlimitsfortheinverseinelasticlifetimesof-resolved upper limits for the inverse inelastic lifetimes of d−holesattheX−pointofthebulkbandstructure.Attheupper-holes at the X-point of the bulk band structure. At the upper d−bandedgethehole−lifetimeis-band edge the hole-lifetime is \tau_h \geq 22 fs,i.e.morethanoneorderofmagnitudelargerthanpredictedforafree−electrongas.Followingcalculationsforfs, i.e. more than one order of magnitude larger than predicted for a free-electron gas. Following calculations for d$-hole dynamics in Cu (I.\ Campillo et al., Phys. Rev. Lett., in press) we interpret the lifetime enhancement by a small scattering cross-section of dd- and spsp-states below the Fermi level. With increasing distance to EFE_F the dd-hole lifetimes get shorter because of the rapidly increasing density of d-states and contributions of intra-dd-band scattering processes, but remain clearly above free-electron-model predictions.Comment: 14 pages, 7 figure

    Aggregation Behavior And Chromonic Liquid Crystal Properties Of An Anionic Monoazo Dye

    Get PDF
    X-ray scattering and various optical techniques are utilized to study the aggregation process and chromonic liquid crystal phase of the anionic monoazo dye Sunset Yellow FCF. The x-ray results demonstrate that aggregation involves pi-pi stacking of the molecules into columns, with the columns undergoing a phase transition to an orientationally ordered chromonic liquid crystal phase at high dye concentration. Optical absorption measurements on dilute solutions reveal that the aggregation takes place at all concentrations, with the average aggregation number increasing with concentration. A simple theory based on the law of mass action and an isodesmic aggregation process is in excellent agreement with the experimental data and yields a value for the bond energy between molecules in an aggregate. Measurements of the birefringence and order parameter are also performed as a function of temperature in the chromonic liquid crystal phase. The agreement between these results and a more complicated theory of aggregation is quite reasonable. Overall, these results both confirm that the aggregation process for some dyes is isodesmic and provide a second example of a well-characterized chromonic system

    Quasiparticles and Energy Scaling in Bi2_2Sr2_2Can−1_{n-1}Cun_nO2n+4_{2n+4} (n\it{n}=1-3): Angle-Resolved Photoemission Spectroscopy

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) has been performed on the single- to triple-layered Bi-family high-{\it Tc_c} superconductors (Bi2_2Sr2_2Can−1_{n-1}Cun_nO2n+4_{2n+4}, n\it{n}=1-3). We found a sharp quasiparticle peak as well as a pseudogap at the Fermi level in the triple-layered compound. Comparison among three compounds has revealed a universal rule that the characteristic energies of superconducting and pseudogap behaviors are scaled with the maximum {\it Tc_c}.Comment: 4 pages, 4 figure

    Structural behavior of Pby_yBi1.95−y_{1.95-y}Sr1.49_{1.49}La0.4_{0.4}Cu1.15_{1.15}O6+δ_{6+\delta} for 0<y<0.53

    Full text link
    In the Bi cuprates, the presence of a near 1×\times5 superstructure is well known. Usually, this superstructure is suppressed by the substitution of lead, but there have been reports of a phase separation in so called {\alpha} and {\beta} phases. This paper shows in high detail time how and why the phase separation develops and what happens to the quasi-1×\times5 superstructure upon lead substitution. For this purpose, the lanthanum- and lead-substituted single-layered superconductor Bi2+z_{2+z}Sr2−z_{2-z}CuO6+δ_{6+\delta} has been investigated by scanning tunneling microscopy and low-energy electron diffraction. The La content was kept constant at slightly under-doped concentration while the Pb content was changed systematically. Thermodynamic considerations show that a phase mixture of {\alpha} and {\beta} phases is inevitable.Comment: 17 pages, 4 figure
    • …
    corecore