726 research outputs found
Nanoscale spin-polarization in dilute magnetic semiconductor (In,Mn)Sb
Results of point contact Andreev reflection (PCAR) experiments on (In,Mn)Sb
are presented and analyzed in terms of current models of charge conversion at a
superconductor-ferromagnet interface. We investigate the influence of surface
transparency, and study the crossover from ballistic to diffusive transport
regime as contact size is varied. Application of a Nb tip to a (In,Mn)Sb sample
with Curie temperature Tc of 5.4 K allowed the determination of
spin-polarization when the ferromagnetic phase transition temperature is
crossed. We find a striking difference between the temperature dependence of
the local spin polarization and of the macroscopic magnetization, and
demonstrate that nanoscale clusters with magnetization close to the saturated
value are present even well above the magnetic phase transition temperature.Comment: 4 page
Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures
The magnetization dynamics in diluted magnetic semiconductor heterostructures
based on (Zn,Mn)Se and (Cd,Mn)Te has been studied experimentally by optical
methods and simulated numerically. In the samples with nonhomogeneous magnetic
ion distribution this dynamics is contributed by spin-lattice relaxation and
spin diffusion in the Mn spin system. The spin diffusion coefficient of
7x10^(-8) cm^2/s has been evaluated for Zn(0.99)Mn(0.01)Se from comparison of
experimental and numerical results. Calculations of the giant Zeeman splitting
of the exciton states and the magnetization dynamics in the ordered alloys and
parabolic quantum wells fabricated by the digital growth technique show perfect
agreement with the experimental data. In both structure types the spin
diffusion has an essential contribution to the magnetization dynamics.Comment: 12 pages, 11 figure
Definitive observation of the dark triplet ground state of charged excitons in high magnetic fields
The ground state of negatively charged excitons (trions) in high magnetic
fields is shown to be a dark triplet state, confirming long-standing
theoretical predictions. Photoluminescence (PL), reflection, and PL excitation
spectroscopy of CdTe quantum wells reveal that the dark triplet trion has lower
energy than the singlet trion above 24 Tesla. The singlet-triplet crossover is
"hidden" (i.e., the spectral lines themselves do not cross due to different
Zeeman energies), but is confirmed by temperature-dependent PL above and below
24 T. The data also show two bright triplet states.Comment: 4 figure
Effects of Capping on the (Ga,Mn)As Magnetic Depth Profile
Annealing can increase the Curie temperature and net magnetization in
uncapped (Ga,Mn)As films, effects that are suppressed when the films are capped
with GaAs. Previous polarized neutron reflectometry (PNR) studies of uncapped
(Ga,Mn)As revealed a pronounced magnetization gradient that was reduced after
annealing. We have extended this study to (Ga,Mn)As capped with GaAs. We
observe no increase in Curie temperature or net magnetization upon annealing.
Furthermore, PNR measurements indicate that annealing produces minimal
differences in the depth-dependent magnetization, as both as-grown and annealed
films feature a significant magnetization gradient. These results suggest that
the GaAs cap inhibits redistribution of interstitial Mn impurities during
annealing.Comment: 12 pages, 3 figures, submitted to Applied Physics Letter
Fractional quantum Hall effect in CdTe
The fractional quantum Hall (FQH) effect is reported in a high mobility CdTe
quantum well at mK temperatures. Fully-developed FQH states are observed at
filling factor 4/3 and 5/3 and are found to be both spin-polarized ground state
for which the lowest energy excitation is not a spin-flip. This can be
accounted for by the relatively high intrinsic Zeeman energy in this single
valley 2D electron gas. FQH minima are also observed in the first excited (N=1)
Landau level at filling factor 7/3 and 8/3 for intermediate temperatures.Comment: Submitte
Recommended from our members
Scintillation Materials for Medical Applications
Scintillators are beginning to attract renewed attention because modern High Energy Physics accelerators are placing unprecedented demands of quantity and quality of detector materials and Positron Emission Tomography (PET), used by the medical field. Both applications required materials for scintillator detectors with properties beyond those delivered by traditional scintillators. Thallium doped halides are very efficient, but slow and chemically unstable. Two modern developments, namely the very fast BaF[sub 2], which owed its success to the newly discovered crossover transitions, and CeF[sub 3], which carried a promise of fast components, more practical wavelengths and attractive efficiency. Since traditional scintillators (Tl doped halides) are very efficient, and could be even more efficient at larger concentrations of Tl, if it were not for concentration quenching. However Tl transitions are spin forbidden and slow. Both ills could be remedied by replacing Tl with Ce, whose transitions are allowed and which is known to form fully concentrated compounds of high photoluminescent efficiency and no quenching. These materials, plus new Ce-doped materials, exhibiting highly promising properties for medical applications, became the target of our studies
- …