2,107 research outputs found

    Structural and dynamical aspects of avoided-crossing resonances in a 33-level Λ\Lambda system

    Full text link
    In a recent publication [Phys. Rev. A 79, 065602 (2009)] it was shown that an avoided-crossing resonance can be defined in different ways, according to level-structural or dynamical aspects, which do not coincide in general. Here a simple 33-level system in a Λ\Lambda configuration is discussed, where the difference between both definitions of the resonance may be observed. We also discuss the details of a proposed experiment to observe this difference, using microwave fields coupling hyperfine magnetic sublevels in alkali atoms.Comment: 7 pages, 5 figure

    A diode laser stabilization scheme for 40Ca+ single ion spectroscopy

    Full text link
    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked laser is measured to be 123 kHz with respect to an independent atomic reference, the Rb D1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation model. The measured Allan variance of 10^(-22) at 10 s demonstrates a high degree of stability for time scales up to 100 s.Comment: 8 pages, 11 figure

    Nonlinear metrology with a quantum interface

    Full text link
    We describe nonlinear quantum atom-light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in 87^{87}Rb ensembles. With these Hamiltonians, metrologically relevant atomic properties, e.g. the collective spin, can be measured better than the "Heisenberg limit" 1/N\propto 1/N. In contrast to other proposed nonlinear metrology systems, the atom-light interface allows both linear and non-linear estimation of the same atomic quantities.Comment: 8 pages, 1 figure

    Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    Full text link
    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate for existing limitations in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results.Comment: Added definition of Uv and Pdiss in the introduction section. Added Mode numbering in table 1 and figure 1 for more clarity. Corrected one wrong figure reference. Other minor typo correction

    Predicting cortical bone adaptation to axial loading in the mouse tibia

    Get PDF
    The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms
    corecore