210 research outputs found

    Potential of different composts to improve soil fertility

    Get PDF
    Composts can influence soil fertility and plant health. These influences can be positive or negative, depending of the quality of the composts. Some practitioners already make use of the positive effects on plant health. For example, they use composts to protect their plants against soil borne diseases in substrate, or to detoxify and reactivate soil after steaming. In order to estimate the potential of Swiss composts to influence soil fertility and plant health positively, we analyzed one hundred composts representative of the different composting systems and qualities available on the market. The organic substance and the nutrient content of the composts varied greatly between the composts; the materials of origin were the major factor influencing these values. The respiration rate and enzyme activities also varied greatly, particularly in the youngest composts. These differences become smaller when the composts become more mature. Maturity, the degradation stage of the organic matter, depended not only on the age of the compost, but also on the management of the process. The N-mineralization potential from compost added to soil showed that a high proportion of young composts immobilized the nitrogen in the soil. This problem was hardly correlated with the materials of origin, but with the management of the first stage of the composting process. Especially composts which had become too dry in this period lost their ammonia-nitrogen, and hence immobilized nitrogen in the soil. Also composts with a low NO3/NH4 ratio, as a rough indicator for an immature compost, immobilized nitrogen in the soil. By contrast, the phytotoxicity of the composts varied very much also in matured composts, showing that the storage of the compost plays a decisive role. While the majority of compost protected cucumber plants against Pythium ultimum, only a few composts suppressed Rhizoctonia solani in basil. With respect to disease suppression, the management of the maturation process seems to play a major role. In conclusion, big differences in compost quality and of their impact on soil fertility and on plant health were observed. The management of the composting process seems to influence the quality of the composts to a higher extent than the materials of origin or the composting system. More attention should be paid to biological quality of composts, in order to produce composts with more beneficial effects on crops

    Mass-based depth and velocity scales for gravity currents and related flows

    Get PDF
    Gravity driven flows on inclines can be caused by cold, saline or turbid inflows into water bodies. Another example are cold downslope winds, which are caused by cooling of the atmosphere at the lower boundary. In a well-known contribution, Ellison and Turner (ET) investigated such flows by making use of earlier work on free shear flows by Morton, Taylor and Turner (MTT). Their entrainment relation is compared here with a spread relation based on a diffusion model for jets by Prandtl. This diffusion approach is suitable for forced plumes on an incline, but only when the channel topography is uniform, and the flow remains supercritical. A second aspect considered here is that the structure of ET's entrainment relation, and their shallow water equations, agrees with the one for open channel flows, but their depth and velocity scales are those for free shear flows, and derived from the velocity field. Conversely, the depth of an open channel flow is the vertical extent of the excess mass of the liquid phase, and the average velocity is the (known) discharge divided by the depth. As an alternative to ET's parameterization, two sets of flow scales similar to those of open channel flows are outlined for gravity currents in unstratified environments. The common feature of the two sets is that the velocity scale is derived by dividing the buoyancy flux by the excess pressure at the bottom. The difference between them is the way the volume flux is accounted for, which—unlike in open channel flows—generally increases in the streamwise direction. The relations between the three sets of scales are established here for gravity currents by allowing for a constant co-flow in the upper layer. The actual ratios of the three width, velocity, and buoyancy scales are evaluated from available experimental data on gravity currents, and from field data on katabatic winds. A corresponding study for free shear flows is referred to. Finally, a comparison of mass-based scales with a number of other flow scales is carried out for available data on a two-layer flow over an obstacle. Mass-based flow scales can also be used for other types of flows, such as self-aerated flows on spillways, water jets in air, or bubble plume

    Hydropeaking indicators for characterization of the Upper-Rhone River in Switzerland

    Get PDF
    River channelization and the construction of high-head storage schemes have been the basis of agricultural and socio-economic development in many alpine regions. One example is the Upper-Rhone River in Switzerland. The Upper-Rhone's morphology changed considerably between 1863 and 1960 as a result of two major channelizations and, from 1950 on, the construction of a large number of high-head storage hydropower schemes in the catchment. These modifications have brought large benefits to the local population, at the cost, however, of substantial disturbances in aquatic and terrestrial ecosystems in and along the river. A primary factor behind these disturbances is the alteration of the natural flow regime, namely hydropeaking due to the operation of the high-head storage hydropower plants. For sustainable river-restoration projects on regulated rivers, scientists and engineers now widely accept the necessity of integrated management of the river. Different aspects such as river morphology, sediment management, water quality, temperature, and the naturally variable flow regime should be considered simultaneously. Mitigation of non-natural, sub-daily flow fluctuations due to hydropeaking is a crucial step in restoring natural flow regimes, but is especially challenging due to the economic constraints such mitigation places upon hydropower plants. With the goal of addressing this challenge, this paper proposes three indicators to describe the flow regime of rivers in alpine catchments with and without high-head storage hydropower plants. The indicators quantify: (1) the seasonal distribution and transfer of water, (2) sub-daily flow fluctuations, and (3) the intensity and frequency of flow changes. Indicators are evaluated in a case study of the Upper-Rhone River for pre- and post-impact situations, and the benefit of a multipurpose project reducing hydropeaking on hydrologic conditions is quantified. Furthermore, the paper explores the possibility of using these indicators to link aquatic and terrestrial ecosystem well being to their hydrolog

    Detection of Local Wall Stiffness Drop in Steel-Lined Pressure Tunnels and Shafts of Hydroelectric Power Plants Using Steep Pressure Wave Excitation and Wavelet Decomposition

    Get PDF
    A new monitoring approach for detecting, locating, and quantifying structurally weak reaches of steel-lined pressure tunnels and shafts is presented. These reaches arise from local deterioration of the backfill concrete and the rock mass surrounding the liner. The change of wave speed generated by the weakening of the radial-liner supports creates reflection boundaries for the incident pressure waves. The monitoring approach is based on the generation of transient pressure with a steep wave front and the analysis of the reflected pressure signals using the fast Fourier transform and wavelet decomposition methods. Laboratory experiments have been carried out to validate the monitoring technique. The multilayer system (steel-concrete-rock) of the pressurized shafts and tunnels is modeled by a one-layer system of the test pipe. This latter was divided into several reaches having different wall stiffnesses. Different longitudinal placements of a steel, aluminum, and PVC pipe reach were tested to validate the identification method of the weak section. DOI: 10.1061/(ASCE)HY.1943-7900.0000478. (C) 2012 American Society of Civil Engineers

    Bulk velocity measurements by video analysis of dye tracer in a macro-rough channel

    Get PDF
    Steep mountain rivers have hydraulic and morphodynamic characteristics that hinder velocity measurements. The high spatial variability of hydraulic parameters, such as water depth (WD), river width and flow velocity, makes the choice of a representative cross-section to measure the velocity in detail challenging. Additionally, sediment transport and rapidly changing bed morphology exclude the utilization of standard and often intrusive velocity measurement techniques. The limited technical choices are further reduced in the presence of macro-roughness elements, such as large, relatively immobile boulders. Tracer tracking techniques are among the few reliable methods that can be used under these conditions to evaluate the mean flow velocity. However, most tracer tracking techniques calculate bulk flow velocities between two or more fixed cross-sections. In the presence of intense sediment transport resulting in an important temporal variability of the bed morphology, dead water zones may appear in the few selected measurement sections. Thus a technique based on the analysis of an entire channel reach is needed in this study. A dye tracer measurement technique in which a single camcorder visualizes a long flume reach is described and developed. This allows us to overcome the problem of the presence of dead water zones. To validate this video analysis technique, velocity measurements were carried out on a laboratory flume simulating a torrent, with a relatively gentle slope of 1.97% and without sediment transport, using several commonly used velocity measurement instruments. In the absence of boulders, salt injections, WD and ultrasonic velocity profiler measurements were carried out, along with dye injection technique. When boulders were present, dye tracer technique was validated only by comparison with salt tracer. Several video analysis techniques used to infer velocities were developed and compared, showing that dye tracking is a valid technique for bulk velocity measurements. RGB Euclidean distance was identified as being the best measure of the average flow velocity

    Entrainment of floating granules behind a barrier

    Get PDF
    To simulate the retaining capacity of an oil barrier in an uniform flow field, experiments were carried out in a laboratory flume at Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Hydraulic Constructions (LCH) by using Light Expanded Clay Aggregates (LECA) and plastic particles. It was demonstrated that under appropriate assumptions for the effects of buoyancy and gravity forces, the Shields approach is suitable to predict both the entrainment of suspended granules behind a barrier and the start of leakage underneath. The phenomenon was also simulated numerically with a multiphase model using a CFD code, Fluent, and the results were compared to those of the physical experiments. The "Eulerian model" multiphase model of FLUENT was selected to simulate the phenomenon. The numerical model successfully predicts the evolution of the slick shape behind the barrier for various flow conditions. The amount of LECA that leaked from the barrier agreed well with the experimental observations

    Intravaginal cytomegalovirus (CMV) challenge elicits maternal viremia and results in congenital transmission in a guinea pig model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to compare intravaginal (ivg) and subcutaneous (sc) administration of the guinea pig cytomegalovirus (GPCMV) in pregnant and non-pregnant guinea pigs. These studies tested the hypotheses that ivg infection would elicit immune responses, produce maternal viremia, and lead to vertical transmission, with an efficiency similar to the traditionally employed sc route.</p> <p>Results</p> <p>Four groups of age- and size-matched guinea pigs were studied. Two groups were pregnant, and two groups were not pregnant. Animals received 5x10<sup>5 </sup>plaque-forming units (PFU) of a GPCMV reconstituted from an infectious bacterial artificial chromosome (BAC) construct containing the full-length GPCMV genome. Seroconversion was compared by IgG ELISA, and viremia (DNAemia) was monitored by PCR. In both pregnant and non-pregnant animals, sc inoculation resulted in significantly higher serum ELISA titers than ivg inoculation at 8 and 12 weeks post-infection. Patterns of viremia (DNAemia) were similar in animals inoculated by either sc or ivg route. However, in pregnant guinea pigs, animals inoculated by both routes experienced an earlier onset of DNAemia than did non-pregnant animals. Neither the percentage of dead pups nor the percentage of GPCMV positive placentas differed by inoculation route.</p> <p>Conclusions</p> <p>In the guinea pig model of congenital CMV infection, the ivg route is as efficient at causing congenital infection as the conventional but non-physiologic sc route. This finding could facilitate future experimental evaluation of vaccines and antiviral interventions in this highly relevant animal model.</p

    Attractiveness of a lateral shelter in a channel as a refuge for juvenile brown trout during hydropeaking

    Get PDF
    Peak power production in hydroelectric storage power plants results in frequent and intense flow variations in the rivers downstream of the plants. Fish populations can be negatively impacted when subjected to these so-called hydropeaking phenomena. In researching mitigation solutions, shelters in the riverbanks of channelized rivers have been identified as a means of protecting fish from excessive flow velocities. These shelters were studied systematically using juvenile brown trout (Salmo trutta fario) in an experimental configuration in which a straight channel was equipped with a lateral embayment. The purpose of the experiments was to generate hydrodynamic hydropeaking conditions in the channel that are undesirable for juvenile trout, thereby causing them to enter the shelter. The flow velocity distribution in the intersection plane between the main channel and the lateral shelter was found to be a significant parameter for attracting fish to the shelter. The utilization rate of trout in the shelter was used as a performance indicator. Using a basic rectangular shelter configuration without forced water exchange between the shelter and the channel, the utilization rate was only 35%. This rate was more than doubled by introducing a deviation groyne to force water exchange between the channel and the shelter. The position and orientation angle of this groyne were systematically varied to maximize the utilization rate. Maximum utilization rates approaching 90% were obtained for an optimum configuration in which an island-type groyne was placed in the shelter. The results of the systematic channel tests showed the potential of the shelter to attract fish. Such a shelter could be used in channelized rivers both for morphological revitalization and to improve fish habitats. As a next step in this research, prototype shelters will be built on a natural river and monitored for 2-3years under a hydropeaking flow regime

    Concept for quality management to secure benefits of compost use for soil and plants

    Get PDF
    Use of quality compost can have an important positive impact on soil fertility and plant growth and health. For example, it increases soil humus and improves soil structure and suppressivity towards plant diseases. To obtain these positive results, it is important that the compost quality is appropriate for each use. If used inadequately, the impact of compost can also be negative. The compost producer should be responsible for the quality of his products, and has to communicate the properties of his composts to the users. But to be successful, the compost users have to communicate to the producers the manner in which the compost is to be used. To support compost producers and users in this process, the Swiss producers of compost and digestate published a new quality guideline for compost and digestate in 2010. Five product classes are defined in this guideline: digestate liquid, digestate solid, compost for agricultural use, compost for horticultural use in the open field, and compost for covered cultures. The guideline requires compost producers to establish a quality concept, ranging from collection of green manure to utilization of the products. Public relation activities are then important to communicate this guideline. Communication between compost producers, compost users and other stakeholders is important to improve the potential of compost use and to develop further application possibilities

    Potential erosion capacity of gravity currents created by changing initial conditions

    Get PDF
    We investigate to what extent the initial conditions (in terms of buoyancy and geometry) of saline gravity currents flowing over a horizontal bottom influence their runout and entrainment capacity. In particular, to what extent the effect of the introduction of an inclined channel reach, just upstream from the lock gate, influences the hydrodynamics of gravity currents and consequently its potential erosion capacity is still an open question. The investigation presented herein focuses on the unknown effects of an inclined lock on the geometry of the current, on the streamwise velocity, on bed shear stress, and on the mechanisms of entrainment and mass exchange. Gravity currents were reproduced in the laboratory through the lock-exchange technique, and systematic tests were performed with different initial densities, combined with five initial volumes of release on horizontal and sloped locks. The inclination of the upstream reach of the channel (the lock) was varied from 0&thinsp;% to 16&thinsp;%, while the lock length was reduced by up to 1∕4 of the initial reference case. We observed that the shape of the current is modified due to the enhanced entrainment of ambient water, which is the region of the current in which this happens most. A counterintuitive relation between slope and mean streamwise velocity was found, supporting previous findings that hypothesized that gravity currents flowing down small slopes experience an initial acceleration followed by a deceleration. For the steepest slope tested, two opposite mechanisms of mass exchange are identified and discussed, i.e., the current entrainment of water from the upper surface due to the enhanced friction at the interface and the head feeding by a rear-fed current. The bed shear stress and the corresponding potential erosion capacity are discussed, giving insights into the geomorphological implications of natural gravity currents caused in different topographic settings.</p
    • 

    corecore