12,554 research outputs found

    Life considerations of the shuttle orbiter densified-tile thermal protection system

    Get PDF
    The Shuttle orbiter themal protection system (TPS) incorporates ceramic reusable surface insulation tiles bonded to the orbiter substructure through a strain isolation pad. Densification of the bonding surface of the tiles increases the static strength of the tiles. The densification proces does not, however, necessarily lead to an equivalent increase in fatigue strength. Investigation of the expected lifetime of densified tile TPS under both sinusoidal loading and random loading simulating flight conditions indicates that the strain isolation pads are the weakest components of the TPS under fatigue loading. The felt pads loosen under repetitive loading and, in highly loaded regions, could possibly cause excessive step heights between tiles causing burning of the protective insulation between tiles. A method of improving the operational lifetime of the TPS by using a strain isolation pad with increased stiffness is presented as is the consequence of the effect of increased stiffness on the tile inplane strains and transverse stresses

    Generation of long time creep data of refractory alloys at elevated temperatures Eleventh quarterly report, 26 Dec. 1965 - 26 Mar. 1966

    Get PDF
    Creep tests of arc-cast and vapor deposited tungsten, molybdenum alloys, niobium, and tantalum base alloys for use in advanced power system

    Generation of long time creep data on refractory alloys at elevated temperatures eighth quarterly report

    Get PDF
    Creep resistance of refractory alloys at elevated temperatures under ultrahigh vacuum condition

    Fatigue properties of shuttle thermal protection system

    Get PDF
    Static and cyclic load tests were conducted to determine the static and fatigue strength of the RIS tile/SIP thermal protection system used on the orbiter of the space shuttle. The material systems investigated include the densified and undensified LI-900 tile system on the .40 cm thick SIP and the densified and undensified LI-2200 tile system on the .23 cm (.090 inch) thick SIP. The tests were conducted at room temperature with a fully reversed uniform cyclic loading at 1 Hertz. Cyclic loading causes a relatively large reduction in the stress level that each of the SIP/tile systems can withstand for a small number of cycles. For example, the average static strength of the .40 cm thick SIP/LI-900 tile system is reduced from 86 kPa to 62 kPa for a thousand cycles. Although the .23 cm thick SIP/LI-2200 tile system has a higher static strength, similar reductions in the fatigue strength are noted. Densifying the faying surface of the RSI tile changes the failure mode from the SIP/tile interface to the parent RSI or the SIP and thus greatly increases the static strength of the system. Fatigue failure for the densified tile system, however, occurs due to complete separation or excessive elongation of the SIP and the fatigue strength is only slightly greater than that for the undensified tile system

    Generation of long time creep data on refractory alloys at elevated temperatures Quarterly report, 26 Oct. - 26 Dec. 1966

    Get PDF
    Long-time creep data on refractory metal alloys for advanced space power system

    Generation of long time creep data of refractory alloys at elevated temperatures

    Get PDF
    Creep test data on refractory metal alloys for use in spacecraft power supply system

    Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft

    Get PDF
    A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator

    Development of a polysilicon process based on chemical vapor deposition (phase 1)

    Get PDF
    A dichlorosilane-based reductive chemical vapor deposition (CVD) process demonstrated is capable of producing, at low cost, high quality polycrystalline silicon. Testing of decomposition reactor heat shields to insure that the shield provides adequate personnel protection assuming a worst case explosion was completed. Minor modifications to a production reactor heat shield provided adequate heat shield integrity. Construction of the redesigned PDU (Process Development Unit) to accommodate all safety related information proceeded on schedule. Structural steel work was completed as is the piping and instrumentation design work. Major pieces of process equipment were received and positioned in the support structure and all transfer piping and conduits to the PDU were installed. Construction was completed on a feed system for supplying DCS to an intermediate sized reactor. The feed system was successfully interfaced with a reactor equipped with a modified heat shield. Reactor checkout was completed

    Development of a polysilicon process based on chemical vapor deposition, phase 1

    Get PDF
    The development of a dichlorosilane-based reductive chemical vapor deposition process for the production of polycrystalline silicon is discussed. Experimental data indicate that the ease of ignition and explosion severity of dichlorosilane (DCS)/air mixtures is substantially attenuated if the DCS is diluted with hydrogen. Redesign of the process development unit to accommodate safety related information is described. Several different sources of trichlorosilane were used to generate a mixture of redistributed chlorosilanes via Dowex ion exchange resin. The unseparated mixtures were then fed to an experimental reactor in which silicon was deposited and the deposited silicon analyzed for electrically active impurities. At least one trichlorosilane source provided material of requisite purity. Silicon grown in the experimental reactor was converted to single crystal material and solar cells fabricated and tested
    corecore