9,608 research outputs found

    Absolute flux measurements for swift atoms

    Get PDF
    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube

    Cavity QED with separate photon storage and qubit readout modes

    Full text link
    We present the realization of a cavity quantum electrodynamics setup in which photons of strongly different lifetimes are engineered in different harmonic modes of the same cavity. We achieve this in a superconducting transmission line resonator with superconducting qubits coupled to the different modes. One cavity mode is strongly coupled to a detection line for qubit state readout, while a second long lifetime mode is used for photon storage and coherent quantum operations. We demonstrate sideband based measurement of photon coherence, generation of n photon Fock states and the scaling of the sideband Rabi frequency with the square root of n using a scheme that may be extended to realize sideband based two-qubit logic gates.Comment: 4 pages, 5 figures, version with high resolution figures available at http://qudev.ethz.ch/content/science/PubsPapers.htm

    Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits

    Full text link
    We demonstrate time resolved driving of two-photon blue sideband transitions between superconducting qubits and a transmission line resonator. Using the sidebands, we implement a pulse sequence that first entangles one qubit with the resonator, and subsequently distributes the entanglement between two qubits. We show generation of 75% fidelity Bell states by this method. The full density matrix of the two qubit system is extracted using joint measurement and quantum state tomography, and shows close agreement with numerical simulation. The scheme is potentially extendable to a scalable universal gate for quantum computation.Comment: 4 pages, 5 figures, version with high resolution figures available at http://qudev.ethz.ch/content/science/PubsPapers.htm

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    Inhibitor regulation of tissue kallikrein activity in the synovial fluid of patients with rheumatoid athritis

    Get PDF
    Tissue kallikrein (TK) and 1-antitrypsin (AT)/TK complexes can be detected in SF from patients with RA if components of the fluids which interfere with the detection of TK are removed. 2-Macroglobulin (2-M) in SF was demonstrated to contain trapped proteases which were still active in amidase assays. Removal of 2-M from RA SF reduced their amidase activity. However, at least some of the remaining activity was due to TK because it was soya bean trypsin inhibitor resistant and trasylol sensitive and was partly removed by affinity chromatography on anti-TK sepharose. Removal of RF from the fluids reduced the values obtained for TK levels by ELISA. Addition of SF to human urinary kallikrein (HUK) considerably reduced the levels of TK detected suggesting the presence of a TK ELISA inhibitor in the fluids. Removal of components of >300 kDa from SF markedly reduced the TK ELISA inhibitory activity and increased the values for both the TK and l-AT/TK levels in fluids as measured by ELISA. It is considered this novel inhibitor does not bind to the active site of TK but rather binds to the site reactive with anti-TK antibodies

    Spin Waves in the Ferromagnetic Ground State of the Kagome Staircase System Co3V2O8

    Full text link
    Inelastic neutron scattering measurements were performed on single crystal Co3V2O8 wherein magnetic cobalt ions reside on distinct spine and cross-tie sites within kagome staircase planes. This system displays a rich magnetic phase diagram which culminates in a ferromagnetic ground state below Tc~6 K. We have studied the low-lying magnetic excitations in this phase within the kagome plane. Despite the complexity of the system at higher temperatures, linear spin-wave theory describes most of the quantitative detail of the inelastic neutron measurements. Our results show two spin-wave branches, the higher energy of which displays finite spin-wave lifetimes well below Tc, and negligible magnetic exchange coupling between Co moments on the spine sites.Comment: 4 pages and 4 figure

    Doping dependence of the mass enhancement in (Pb,Bi)_2 Sr_2 Ca Cu_2 O_8 at the antinodal point in the superconducting and normal state

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is used to study the mass renormalization of the charge carriers in the high-T_c superconductor (Pb,Bi)_2Sr_2CaCu_2O_8 in the vicinity of the (pi,0) point in the superconducting and the normal state. Using matrix element effects at different photon energies and due to a high momentum and energy resolution the bonding and the antibonding bands could be separated in the whole dopant range. A huge anisotropic coupling to a bosonic collective mode is observed below T_c for both bands in particular for the underdoped case. Above T_c, the more isotropic coupling to a continuum or a mode at much higher energy is significantly weaker.Comment: 4 revtex pages, 4 eps figure

    Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling

    Get PDF
    In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving ~he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required to obtain usable convergence from an iterative solver. The authors have examined the use of an Incomplete LU Threshold (ILUT) preconditioner . to solver linear systems stemming from higher order BEM/FEM formulations in 2D scattering problems. Although the resulting preconditioner provided aD excellent approximation to the system inverse, its size in terms of non-zero entries represented only a modest improvement when compared with the fill-in associated with a sparse direct solver. Furthermore, the fill-in of the preconditioner could not be substantially reduced without the occurrence of instabilities. In addition to the results for these 2D problems, the authors will present iterative solution data from the application of the ILUT preconditioner to 3D problems

    Paramagnetic Meissner effect in superconductors from self-consistent solutions of Ginzburg-Landau equations

    Full text link
    The paramagnetic Meissner effect (PME) is observed in small superconducting samples, and a number of controversial explanations of this effect are proposed, but there is as yet no clear understanding of its nature. In the present paper PME is considered on the base of the Ginzburg-Landau theory (GL). The one-dimensional solutions are obtained in a model case of a long superconducting cylinder for different cylinder radii R, the GL-parameters \kappa and vorticities m. Acording to GL-theory, PME is caused by the presence of vortices inside the sample. The superconducting current flows around the vortex to screeen the vortex own field from the bulk of the sample. Another current flows at the boundary to screen the external field H from entering the sample. These screening currents flow in opposite directions and contribute with opposite signs to the total magnetic moment (or magnetization) of the sample. Depending on H, the total magnetization M may be either negative (diamagnetism), or positive (paramagnetism). A very complicated saw-like dependence M(H) (and other characteristics), which are obtained on the base of self-consistent solutions of the GL-equations, are discussed.Comment: 6 pages, 5 figures, RevTex, submitted to Phys. Rev.

    Self-assembly, modularity and physical complexity

    Get PDF
    We present a quantitative measure of physical complexity, based on the amount of information required to build a given physical structure through self-assembly. Our procedure can be adapted to any given geometry, and thus to any given type of physical system. We illustrate our approach using self-assembling polyominoes, and demonstrate the breadth of its potential applications by quantifying the physical complexity of molecules and protein complexes. This measure is particularly well suited for the detection of symmetry and modularity in the underlying structure, and allows for a quantitative definition of structural modularity. Furthermore we use our approach to show that symmetric and modular structures are favoured in biological self-assembly, for example of protein complexes. Lastly, we also introduce the notions of joint, mutual and conditional complexity, which provide a useful distance measure between physical structures.Comment: 9 pages, submitted for publicatio
    • …
    corecore