7,434 research outputs found
Study of one-dimensional nature of (Sr,Ba)_2Cu(PO_4)_2 and BaCuP_2O_7 via 31P NMR
The magnetic behavior of the low-dimensional phosphates (Sr,Ba)_2 Cu(PO_4)_2
and BaCuP_2O_7 was investigated by means of magnetic susceptibility and ^{31}P
nuclear magnetic resonance (NMR) measurements. We present here the NMR shift
K(T), the spin-lattice 1/T_1 and spin-spin 1/T_2 relaxation-rate data over a
wide temperature range 0.02 K < T < 300 K. The T-dependence of the NMR K(T) is
well described by the S=1/2 Heisenberg antiferromagnetic chain model with an
intrachain exchange of J/k_B = 165 K, 151 K, and 108 K in Sr_2Cu(PO_4)_2,
Ba_2Cu(PO_4)_2, and BaCuP_2O_7, respectively. Our measurements suggest the
presence of magnetic ordering at 0.8 K in BaCuP_2O_7 (J/k_B = 108 K). For all
the samples, we find that 1/T_1 is nearly T-independent at low-temperatures (1
K < T < 10 K), which is theoretically expected for 1D chains when relaxation is
dominated by fluctuations of the staggered susceptibility. At high
temperatures, 1/T_1 varies nearly linearly with temperature
Predictions in SU(5) Supergravity Grand Unification with Proton Stability and Relic Density Constraints
It is shown that in the physically interesting domain of the parameter space
of SU(5) supergravity GUT, the Higgs and the Z poles dominate the LSP
annihilation. Here the naive analyses on thermal averaging breaks down and
formulae are derived which give a rigorous treatment over the poles. These
results are then used to show that there exist significant domains in the
parameter space where the constraints of proton stability and cosmology are
simultaneously satisfied. New upper limits on light particle masses are
obtained.Comment: (An error in the reheating factor is corrected, strengthening the
conclusions, i.e. the region in parameter space where the relic density
constraints are satisfied is enlarged.
Antiferromagnetism of ZnVO(PO and the dilution with Ti
We report static and dynamic properties of the antiferromagnetic compound
Zn(VO)(PO), and the consequences of non-magnetic Ti
doping at the V site. P nuclear magnetic resonance (NMR) spectra
and spin-lattice relaxation rate () consistently show the formation of
the long-range antiferromagnetic order below \,K. The critical
exponent estimated from the temperature dependence of the
sublattice magnetization measured by P NMR at 9.4\,MHz is consistent
with universality classes of three-dimensional spin models. The isotropic and
axial hyperfine couplings between the P nuclei and V spins are
Oe/ and Oe/, respectively. Magnetic susceptibility
data above 6.5\,K and heat capacity data above 4.5\,K are well described by
quantum Monte-Carlo simulations for the Heisenberg model on the square lattice
with \,K. This value of is consistent with the values obtained
from the NMR shift, and electron spin resonance (ESR) intensity
analysis. Doping ZnVO(PO with non-magnetic Ti leads to a
marginal increase in the value and the overall dilution of the spin
lattice. In contrast to the recent \textit{ab initio} results, we find neither
evidence for the monoclinic structural distortion nor signatures of the
magnetic one-dimensionality for doped samples with up to 15\% of Ti. The
N\'eel temperature decreases linearly with increasing the amount of
the non-magnetic dopant.Comment: 13 pages, 12 figures, 2 table
CP Violation and Dark Matter
A brief review is given of the effects of CP violation on the direct
detection of neutralinos in dark matter detectors. We first summarize the
current developments using the cancellation mechanism which allows for the
existence of large CP violating phases consistent with experimental limits on
the electron and on the neutron electric dipole moments in a broad class of
SUSY, string and D brane models. We then discuss their effects on the
scattering of neutralinos from quarks and on the event rates. It is found that
while CP effects on the event rates can be enormous such effects are reduced
significantly with the imposition of the EDM constraints. However, even with
the inclusion of the EDM constraints the effects are still very significant and
should be included in a precision prediction of event rates in any SUSY, string
or D brane model.Comment: Based on an invited talk at the conference "Sources and Detection of
Dark Matter in the Universe", at Marina del Rey, CA, Feb. 23-25, 2000; 12
pages, Latex including 2 figure
Singlet ground state in the alternating spin- chain compound NaVOAsO
We present the synthesis and a detailed investigation of structural and
magnetic properties of polycrystalline NaVOAsO by means of x-ray
diffraction, magnetization, electron spin resonance (ESR), and As
nuclear magnetic resonance (NMR) measurements as well as density-functional
band structure calculations. Temperature-dependent magnetic susceptibility, ESR
intensity, and NMR line shift could be described well using an alternating
spin- chain model with the exchange coupling K and
an alternation parameter . From the high-field magnetic
isotherm measured at K, the critical field of the gap closing is found
to be T, which corresponds to the zero-field spin gap of
K. Both NMR shift and spin-lattice relaxation
rate show an activated behavior at low temperatures, further confirming the
singlet ground state. The spin chains do not coincide with the structural
chains, whereas the couplings between the spin chains are frustrated. Because
of a relatively small spin gap, NaVOAsO is a promising compound for further
experimental studies under high magnetic fields.Comment: 14 pages, 10 figures, 2 table
Hindered magnetic order from mixed dimensionalities in CuPO
We present a combined experimental and theoretical study of the spin-1/2
compound CuPO that features a network of two-dimensional (2D)
antiferromagnetic (AFM) square planes, interconnected via one-dimensional (1D)
AFM spin chains. Magnetic susceptibility, high-field magnetization, and
electron spin resonance (ESR) data, as well as microscopic density-functional
band-structure calculations and subsequent quantum Monte-Carlo simulations,
show that the coupling 40 K in the layers is an order of magnitude
larger than 4 K in the chains. Below 8 K, CuPO
develops long-range order (LRO), as evidenced by a weak net moment on the 2D
planes induced by anisotropic magnetic interactions of Dzyaloshinsky-Moriya
type. A striking feature of this 3D ordering transition is that the 1D moments
grow significantly slower than the ones on the 2D layers, which is evidenced by
the persistent paramagnetic ESR signal below . Compared to typical
quasi-2D magnets, the ordering temperature of CuPO 0.2
is unusually low, showing that weakly coupled spins sandwiched between 2D
magnetic units effectively decouple these units and impede the long-range
ordering.Comment: 11 pages, 12 figures, 1 table; published version with few additional
citations added and misprints fixe
31P NMR study of Na2CuP2O7: a S=1/2 two-dimensional Heisenberg antiferromagnetic system
The magnetic properties of Na2CuP2O7 were investigated by means of 31P
nuclear magnetic resonance (NMR), magnetic susceptibility, and heat capacity
measurements. We report the 31P NMR shift, the spin-lattice 1/T1, and spin-spin
1/T2 relaxation-rate data as a function of temperature T.
The temperature dependence of the NMR shift K(T) is well described by the
S=1/2 square lattice Heisenberg antiferromagnetic (HAF) model with an
intraplanar exchange of J/k_B \simeq 18\pm2 K and a hyperfine coupling A =
(3533\pm185) Oe/mu_B. The 31P NMR spectrum was found to broaden abruptly below
T \sim 10 K signifying some kind of transition. However, no anomaly was noticed
in the bulk susceptibility data down to 1.8 K. The heat capacity appears to
have a weak maximum around 10 K. With decrease in temperatures, the
spin-lattice relaxation rate 1/T1 decreases monotonically and appears to agree
well with the high temperature series expansion expression for a S = 1/2 2D
square lattice.Comment: 12 pages, 8 figures, submitted to J. Phys.: Cond. Ma
Disordered ground state in the spin-orbit coupled cobalt-based metal-organic framework magnet with orthogonal spin dimers
We present the magnetic properties of a strongly spin-orbit coupled quantum
dimer magnet based on Co. The metal-organic framework compound
Co(BDC)(DPTTZ)DMF features Co dimers arranged nearly
orthogonal to each other, similar to the Shastry-Sutherland lattice. Our
assessment based on the magnetization and heat capacity experiments reveals
that the magnetic properties at low temperatures can be described by an
effective Kramers doublet and the ground state is a singlet
with a tiny spin gap. Although the magnetic susceptibility could be analyzed in
terms of the interacting dimer model with an isotropic intradimer coupling
K, this model fails to reproduce the shape of
magnetization isotherm and heat capacity data. A model of isolated spin dimers
with the anisotropic exchange couplings K and K provides an adequate description to the magnetic susceptibility,
magnetization isotherm, and heat capacity data at low temperatures.
Interestingly, no field-induced quantum phase phase is detected down to 100~mK
around the critical field of gap closing, suggesting the absence of
Bose-Einstein condensation of triplons and establishing isolated dimers with a
negligible interdimer coupling.Comment: 9 pages, 7 figure
- …