1,044 research outputs found

    Building the Brazilian Academic Genealogy Tree

    Full text link
    Along the history, many researchers provided remarkable contributions to science, not only advancing knowledge but also in terms of mentoring new scientists. Currently, identifying and studying the formation of researchers over the years is a challenging task as current repositories of theses and dissertations are cataloged in a decentralized way through many local digital libraries. Following our previous work in which we created and analyzed a large collection of genealogy trees extracted from NDLTD, in this paper we focus our attention on building such trees for the Brazilian research community. For this, we use data from the Lattes Platform, an internationally renowned initiative from CNPq, the Brazilian National Council for Scientific and Technological Development, for managing information about individual researchers and research groups in Brazil

    Weblog patterns and human dynamics with decreasing interest

    Full text link
    Weblog is the fourth way of network exchange after Email, BBS and MSN. Most bloggers begin to write blogs with great interest, and then their interests gradually achieve a balance with the passage of time. In order to describe the phenomenon that people's interest in something gradually decreases until it reaches a balance, we first propose the model that describes the attenuation of interest and reflects the fact that people's interest becomes more stable after a long time. We give a rigorous analysis on this model by non-homogeneous Poisson processes. Our analysis indicates that the interval distribution of arrival-time is a mixed distribution with exponential and power-law feature, that is, it is a power law with an exponential cutoff. Second, we collect blogs in ScienceNet.cn and carry on empirical studies on the interarrival time distribution. The empirical results agree well with the analytical result, obeying a special power law with the exponential cutoff, that is, a special kind of Gamma distribution. These empirical results verify the model, providing an evidence for a new class of phenomena in human dynamics. In human dynamics there are other distributions, besides power-law distributions. These findings demonstrate the variety of human behavior dynamics.Comment: 8 pages, 1 figure

    Circadian pattern and burstiness in mobile phone communication

    Full text link
    The temporal communication patterns of human individuals are known to be inhomogeneous or bursty, which is reflected as the heavy tail behavior in the inter-event time distribution. As the cause of such bursty behavior two main mechanisms have been suggested: a) Inhomogeneities due to the circadian and weekly activity patterns and b) inhomogeneities rooted in human task execution behavior. Here we investigate the roles of these mechanisms by developing and then applying systematic de-seasoning methods to remove the circadian and weekly patterns from the time-series of mobile phone communication events of individuals. We find that the heavy tails in the inter-event time distributions remain robustly with respect to this procedure, which clearly indicates that the human task execution based mechanism is a possible cause for the remaining burstiness in temporal mobile phone communication patterns.Comment: 17 pages, 12 figure

    Timing interactions in social simulations: The voter model

    Full text link
    The recent availability of huge high resolution datasets on human activities has revealed the heavy-tailed nature of the interevent time distributions. In social simulations of interacting agents the standard approach has been to use Poisson processes to update the state of the agents, which gives rise to very homogeneous activity patterns with a well defined characteristic interevent time. As a paradigmatic opinion model we investigate the voter model and review the standard update rules and propose two new update rules which are able to account for heterogeneous activity patterns. For the new update rules each node gets updated with a probability that depends on the time since the last event of the node, where an event can be an update attempt (exogenous update) or a change of state (endogenous update). We find that both update rules can give rise to power law interevent time distributions, although the endogenous one more robustly. Apart from that for the exogenous update rule and the standard update rules the voter model does not reach consensus in the infinite size limit, while for the endogenous update there exist a coarsening process that drives the system toward consensus configurations.Comment: Book Chapter, 23 pages, 9 figures, 5 table

    How citation boosts promote scientific paradigm shifts and Nobel Prizes

    Get PDF
    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the "boosting effect" of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying "boost factor" is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain, how social influence comes about and why the value of goods depends so strongly on the attention they attract.Comment: 6 pages, 6 figure

    Statistical mixing and aggregation in Feller diffusion

    Full text link
    We consider Feller mean-reverting square-root diffusion, which has been applied to model a wide variety of processes with linearly state-dependent diffusion, such as stochastic volatility and interest rates in finance, and neuronal and populations dynamics in natural sciences. We focus on the statistical mixing (or superstatistical) process in which the parameter related to the mean value can fluctuate - a plausible mechanism for the emergence of heavy-tailed distributions. We obtain analytical results for the associated probability density function (both stationary and time dependent), its correlation structure and aggregation properties. Our results are applied to explain the statistics of stock traded volume at different aggregation scales.Comment: 16 pages, 3 figures. To be published in Journal of Statistical Mechanics: Theory and Experimen

    Early risk factors for adolescent antisocial behaviour: an Australian longitudinal study

    Get PDF
    Objective: This investigation utilizes data from an Australian longitudinal study to identify early risk factors for adolescent antisocial behaviour. Method: Analyses are based on data from the Mater University Study of Pregnancy, an on-going longitudinal investigation of women’s and children’s health and development involving over 8000 participants. Five types of risk factors (child characteristics, perinatal factors, maternal/familial characteristics, maternal pre- and post-natal substance use and parenting practices) were included in analyses and were based on maternal reports, child assessments and medical records. Adolescent antisocial behaviour was measured when children were 14 years old, using the delinquency subscale of the Child Behaviour Checklist. Results: Based on a series of logistic regression models, significant risk factors for adolescent antisocial behaviour included children’s prior problem behaviour (i.e. aggression and attention/restlessness problems at age 5 years) and marital instability, which doubled or tripled the odds of antisocial behaviour. Perinatal factors, maternal substance use, and parenting practices were relatively poor predictors of antisocial behaviour. Conclusions: Few studies have assessed early predictors of antisocial behaviour in Australia and the current results can be used to inform prevention programs that target risk factors likely to lead to problem outcomes for Australian youth

    Temporal networks of face-to-face human interactions

    Full text link
    The ever increasing adoption of mobile technologies and ubiquitous services allows to sense human behavior at unprecedented levels of details and scale. Wearable sensors are opening up a new window on human mobility and proximity at the finest resolution of face-to-face proximity. As a consequence, empirical data describing social and behavioral networks are acquiring a longitudinal dimension that brings forth new challenges for analysis and modeling. Here we review recent work on the representation and analysis of temporal networks of face-to-face human proximity, based on large-scale datasets collected in the context of the SocioPatterns collaboration. We show that the raw behavioral data can be studied at various levels of coarse-graining, which turn out to be complementary to one another, with each level exposing different features of the underlying system. We briefly review a generative model of temporal contact networks that reproduces some statistical observables. Then, we shift our focus from surface statistical features to dynamical processes on empirical temporal networks. We discuss how simple dynamical processes can be used as probes to expose important features of the interaction patterns, such as burstiness and causal constraints. We show that simulating dynamical processes on empirical temporal networks can unveil differences between datasets that would otherwise look statistically similar. Moreover, we argue that, due to the temporal heterogeneity of human dynamics, in order to investigate the temporal properties of spreading processes it may be necessary to abandon the notion of wall-clock time in favour of an intrinsic notion of time for each individual node, defined in terms of its activity level. We conclude highlighting several open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series: Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.

    Universal features of correlated bursty behaviour

    Get PDF
    Inhomogeneous temporal processes, like those appearing in human communications, neuron spike trains, and seismic signals, consist of high-activity bursty intervals alternating with long low-activity periods. In recent studies such bursty behavior has been characterized by a fat-tailed inter-event time distribution, while temporal correlations were measured by the autocorrelation function. However, these characteristic functions are not capable to fully characterize temporally correlated heterogenous behavior. Here we show that the distribution of the number of events in a bursty period serves as a good indicator of the dependencies, leading to the universal observation of power-law distribution in a broad class of phenomena. We find that the correlations in these quite different systems can be commonly interpreted by memory effects and described by a simple phenomenological model, which displays temporal behavior qualitatively similar to that in real systems
    corecore