108 research outputs found

    Pathway Analysis for Genome-Wide Association Study of Basal Cell Carcinoma of the Skin

    Get PDF
    Recently, a pathway-based approach has been developed to evaluate the cumulative contribution of the functionally related genes for genome-wide association studies (GWASs), which may help utilize GWAS data to a greater extent.In this study, we applied this approach for the GWAS of basal cell carcinoma (BCC) of the skin. We first conducted the BCC GWAS among 1,797 BCC cases and 5,197 controls in Caucasians with 740,760 genotyped SNPs. 115,688 SNPs were grouped into gene transcripts within 20 kb in distance and then into 174 Kyoto Encyclopedia of Genes and Genomes pathways, 205 BioCarta pathways, as well as two positive control gene sets (pigmentation gene set and BCC risk gene set). The association of each pathway with BCC risk was evaluated using the weighted Kolmogorov-Smirnov test. One thousand permutations were conducted to assess the significance.Both of the positive control gene sets reached pathway p-values<0.05. Four other pathways were also significantly associated with BCC risk: the heparan sulfate biosynthesis pathway (p  =  0.007, false discovery rate, FDR  =  0.35), the mCalpain pathway (p  =  0.002, FDR  =  0.12), the Rho cell motility signaling pathway (p  =  0.011, FDR  =  0.30), and the nitric oxide pathway (p  =  0.022, FDR  =  0.42).We identified four pathways associated with BCC risk, which may offer new insights into the etiology of BCC upon further validation, and this approach may help identify potential biological pathways that might be missed by the standard GWAS approach

    Evidence for anti-angiogenic and pro-survival functions of the cerebral cavernous malformation protein 3

    Get PDF
    Mutations in CCM1, CCM2, or CCM3 lead to cerebral cavernous malformations, one of the most common hereditary vascular diseases of the brain. Endothelial cells within these lesions are the main disease compartments. Here, we show that adenoviral CCM3 expression inhibits endothelial cell migration, proliferation, and tube formation while downregulation of endogenous CCM3 results in increased formation of tube-like structures. Adenoviral CCM3 expression does not induce apoptosis under normal endothelial cell culture conditions but protects endothelial cells from staurosporine-induced cell death. Tyrosine kinase activity profiling suggests that CCM3 supports PDPK-1/Akt-mediated endothelial cell quiescence and survival

    Calpain system protein expression in carcinomas of the pancreas, bile duct and ampulla

    Get PDF
    Background: Pancreatic cancer, including cancer of the ampulla of Vater and bile duct, is very aggressive and has a poor five year survival rate; improved methods of patient stratification are required. Methods: We assessed the expression of calpain-1, calpain-2 and calpastatin in two patient cohorts using immunohistochemistry on tissue microarrays. The first cohort was composed of 68 pancreatic adenocarcinomas and the second cohort was composed of 120 cancers of the bile duct and ampulla. Results: In bile duct and ampullary carcinomas an association was observed between cytoplasmic calpastatin expression and patient age (P = 0.036), and between nuclear calpastatin expression and increased tumour stage (P = 0.026) and the presence of vascular invasion (P = 0.043). In pancreatic cancer, high calpain-2 expression was significantly associated with improved overall survival (P = 0.036), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.342; 95% confidence interva l = 0.157-0.741; P = 0.007). In cancers of the bile duct and ampulla, low cytoplasmic expression of calpastatin was significantly associated with poor overall survival (P = 0.012), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.595; 95% confidence interval = 0.365-0.968; P = 0.037). Conclusion: The results suggest that calpain-2 and calpastatin expression is important in pancreatic cancers, influencing disease progression. The findings of this study warrant a larger follow-up study. Keywords: Calpain, Calpastatin, Pancreas, Ampulla, Bile duct, Cance

    GPS-CCD: A Novel Computational Program for the Prediction of Calpain Cleavage Sites

    Get PDF
    As one of the most essential post-translational modifications (PTMs) of proteins, proteolysis, especially calpain-mediated cleavage, plays an important role in many biological processes, including cell death/apoptosis, cytoskeletal remodeling, and the cell cycle. Experimental identification of calpain targets with bona fide cleavage sites is fundamental for dissecting the molecular mechanisms and biological roles of calpain cleavage. In contrast to time-consuming and labor-intensive experimental approaches, computational prediction of calpain cleavage sites might more cheaply and readily provide useful information for further experimental investigation. In this work, we constructed a novel software package of GPS-CCD (Calpain Cleavage Detector) for the prediction of calpain cleavage sites, with an accuracy of 89.98%, sensitivity of 60.87% and specificity of 90.07%. With this software, we annotated potential calpain cleavage sites for hundreds of calpain substrates, for which the exact cleavage sites had not been previously determined. In this regard, GPS-CCD 1.0 is considered to be a useful tool for experimentalists. The online service and local packages of GPS-CCD 1.0 were implemented in JAVA and are freely available at: http://ccd.biocuckoo.org/

    Elevated calpain activity in acute myelogenous leukemia correlates with decreased calpastatin expression

    Get PDF
    Calpains are intracellular cysteine proteases that have crucial roles in many physiological and pathological processes. Elevated calpain activity has been associated with many pathological states. Calpain inhibition can be protective or lethal depending on the context. Previous work has shown that c-myc transformation regulates calpain activity by suppressing calpastatin, the endogenous negative regulator of calpain. Here, we have investigated calpain activity in primary acute myelogenous leukemia (AML) blast cells. Calpain activity was heterogeneous and greatly elevated over a wide range in AML blast cells, with no correlation to FAB classification. Activity was particularly elevated in the CD34+CD38− enriched fraction compared with the CD34+CD38+ fraction. Treatment of the cells with the specific calpain inhibitor, PD150606, induced significant apoptosis in AML blast cells but not in normal equivalent cells. Sensitivity to calpain inhibition correlated with calpain activity and preferentially targeted CD34+CD38− cells. There was no correlation between calpain activity and p-ERK levels, suggesting the ras pathway may not be a major contributor to calpain activity in AML. A significant negative correlation existed between calpain activity and calpastatin, suggesting calpastatin is the major regulator of activity in these cells. Analysis of previously published microarray data from a variety of AML patients demonstrated a significant negative correlation between calpastatin and c-myc expression. Patients who achieved a complete remission had significantly lower calpain activity than those who had no response to treatment. Taken together, these results demonstrate elevated calpain activity in AML, anti-leukemic activity of calpain inhibition and prognostic potential of calpain activity measurement

    Locomotion Guidance by Extracellular Matrix Is Adaptive and Can be Restored by a Transient Change in Ca2+ Level

    Get PDF
    Navigation of cell locomotion by gradients of soluble factors can be desensitized if the concentration of the chemo-attractant stays unchanged. It remains obscure if the guidance by immobilized extracellular matrix (ECM) as the substrate is also adaptive and if so, how can the desensitized ECM guidance be resensitized. When first interacting with a substrate containing micron-scale fibronectin (FBN) trails, highly motile fish keratocytes selectively adhere and migrate along the FBN paths. However, such guided motion become adaptive after about 10 min and the cells start to migrate out of the ECM trails. We found that a burst increase of intracellular calcium created by an uncaging technique immediately halts the undirected migration by disrupting the ECM-cytoskeleton coupling, as evidenced by the appearance of retrograde F-actin flow. When the motility later resumes, the activated integrin receptors render the cell selectively binding to the FBN path and reinitiates signaling events, including tyrosine phosphorylation of paxillin, that couple retrograde F-actin flow to the substrate. Thus, the calcium-resensitized cell can undergo a period of ECM-navigated movement, which later becomes desensitized. Our results also suggest that endogenous calcium transients as occur during spontaneous calcium oscillations may exert a cycling resensitization-desensitization control over cell's sensing of substrate guiding cues

    Micro-CT imaging reveals<i> Mekk3 </i>heterozygosity prevents cerebral cavernous malformations in <i>Ccm2</i>-deficient mice

    Get PDF
    Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases

    Stanniocalcin-1 Regulates Re-Epithelialization in Human Keratinocytes

    Get PDF
    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca2+]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca2+]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca2+]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing

    TRAPPC4-ERK2 Interaction Activates ERK1/2, Modulates Its Nuclear Localization and Regulates Proliferation and Apoptosis of Colorectal Cancer Cells

    Get PDF
    The trafficking protein particle complex 4 (TRAPPC4) is implicated in vesicle-mediated transport, but its association with disease has rarely been reported. We explored its potential interaction with ERK2, part of the ERK1/2 complex in the Extracellular Signal-regulated Kinase/ Mitogen-activated Protein Kinase (ERK-MAPK) pathway, by a yeast two-hybrid screen and confirmed by co-immunoprecipitation (Co-IP) and glutathione S-transferase (GST) pull-down. Further investigation found that when TRAPPC4 was depleted, activated ERK1/2 specifically decreased in the nucleus, which was accompanied with cell growth suppression and apoptosis in colorectal cancer (CRC) cells. Overexpression of TRAPPC4 promoted cell viability and caused activated ERK1/2 to increase overall, but especially in the nucleus. TRAPPC4 was expressed more highly in the nucleus of CRC cells than in normal colonic epithelium or adenoma which corresponded with nuclear staining of pERK1/2. We demonstrate here that TRAPPC4 may regulate cell proliferation and apoptosis in CRC by interaction with ERK2 and subsequently phosphorylating ERK1/2 as well as modulating the subcellular location of pERK1/2 to activate the relevant signaling pathway

    KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    Get PDF
    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions
    corecore