1,762 research outputs found

    Conditional regularity of solutions of the three dimensional Navier-Stokes equations and implications for intermittency

    Full text link
    Two unusual time-integral conditional regularity results are presented for the three-dimensional Navier-Stokes equations. The ideas are based on L2mL^{2m}-norms of the vorticity, denoted by Ωm(t)\Omega_{m}(t), and particularly on Dm=ΩmαmD_{m} = \Omega_{m}^{\alpha_{m}}, where αm=2m/(4m3)\alpha_{m} = 2m/(4m-3) for m1m\geq 1. The first result, more appropriate for the unforced case, can be stated simply : if there exists an 1m<1\leq m < \infty for which the integral condition is satisfied (Zm=Dm+1/DmZ_{m}=D_{m+1}/D_{m}) 0tln(1+Zmc4,m)dτ0 \int_{0}^{t}\ln (\frac{1 + Z_{m}}{c_{4,m}}) d\tau \geq 0 then no singularity can occur on [0,t][0, t]. The constant c4,m2c_{4,m} \searrow 2 for large mm. Secondly, for the forced case, by imposing a critical \textit{lower} bound on 0tDmdτ\int_{0}^{t}D_{m} d\tau, no singularity can occur in Dm(t)D_{m}(t) for \textit{large} initial data. Movement across this critical lower bound shows how solutions can behave intermittently, in analogy with a relaxation oscillator. Potential singularities that drive 0tDmdτ\int_{0}^{t}D_{m} d\tau over this critical value can be ruled out whereas other types cannot.Comment: A frequency was missing in the definition of D_{m} in (I5) v3. 11 pages, 1 figur

    Lagrangian analysis of alignment dynamics for isentropic compressible magnetohydrodynamics

    Full text link
    After a review of the isentropic compressible magnetohydrodynamics (ICMHD) equations, a quaternionic framework for studying the alignment dynamics of a general fluid flow is explained and applied to the ICMHD equations.Comment: 12 pages, 2 figures, submitted to a Focus Issue of New Journal of Physics on "Magnetohydrodynamics and the Dynamo Problem" J-F Pinton, A Pouquet, E Dormy and S Cowley, editor

    Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations

    Get PDF
    We build on recent developments in the study of fluid turbulence [Gibbon \textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled, order-mm moments, Dm±D_m^{\pm}, of ω±=ω±j\omega^\pm= \omega \pm j, where ω\omega and jj are, respectively, the vorticity and current density in three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis, for unit magnetic Prandtl number PMP_M, how these moments can be used to identify three possible regimes for solutions of the MHD equations; these regimes are specified by inequalities for Dm±D_m^{\pm} and D1±D_1^{\pm}. We then compare our mathematical results with those from our direct numerical simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its fluid-turbulence counterpart insofar as all solutions, which we have investigated, remain in \textit{only one of these regimes}; this regime has depleted nonlinearity. We examine the implications of our results for the exponents q±q^{\pm} that characterize the power-law dependences of the energy spectra E±(k)\mathcal{E}^{\pm}(k) on the wave number kk, in the inertial range of scales. We also comment on (a) the generalization of our results to the case PM1P_M \neq 1 and (b) the relation between Dm±D_m^{\pm} and the order-mm moments of gradients of hydrodynamic fields, which are used in characterizing intermittency in turbulent flows.Comment: 14 pages, 3 figure

    Utilisation review of thromboelastography in intensive care

    Full text link

    Lagrangian particle paths and ortho-normal quaternion frames

    Full text link
    Experimentalists now measure intense rotations of Lagrangian particles in turbulent flows by tracking their trajectories and Lagrangian-average velocity gradients at high Reynolds numbers. This paper formulates the dynamics of an orthonormal frame attached to each Lagrangian fluid particle undergoing three-axis rotations, by using quaternions in combination with Ertel's theorem for frozen-in vorticity. The method is applicable to a wide range of Lagrangian flows including the three-dimensional Euler equations and its variants such as ideal MHD. The applicability of the quaterionic frame description to Lagrangian averaged velocity gradient dynamics is also demonstrated.Comment: 9 pages, one figure, revise

    Estimates for the two-dimensional Navier-Stokes equations in terms of the Reynolds number

    Get PDF
    The tradition in Navier-Stokes analysis of finding estimates in terms of the Grashof number \bG, whose character depends on the ratio of the forcing to the viscosity ν\nu, means that it is difficult to make comparisons with other results expressed in terms of Reynolds number \Rey, whose character depends on the fluid response to the forcing. The first task of this paper is to apply the approach of Doering and Foias \cite{DF} to the two-dimensional Navier-Stokes equations on a periodic domain [0,L]2[0,L]^{2} by estimating quantities of physical relevance, particularly long-time averages \left, in terms of the Reynolds number \Rey = U\ell/\nu, where U^{2}= L^{-2}\left and \ell is the forcing scale. In particular, the Constantin-Foias-Temam upper bound \cite{CFT} on the attractor dimension converts to a_{\ell}^{2}\Rey(1 + \ln\Rey)^{1/3}, while the estimate for the inverse Kraichnan length is (a_{\ell}^{2}\Rey)^{1/2}, where aa_{\ell} is the aspect ratio of the forcing. Other inverse length scales, based on time averages, and associated with higher derivatives, are estimated in a similar manner. The second task is to address the issue of intermittency : it is shown how the time axis is broken up into very short intervals on which various quantities have lower bounds, larger than long time-averages, which are themselves interspersed by longer, more quiescent, intervals of time.Comment: 21 pages, 1 figure, accepted for publication from J. Math. Phys. for the special issue on mathematical fluid mechanic
    corecore