20,654 research outputs found

    Critical levels of energy degradation

    Get PDF

    Vector field mediated models of dynamical light velocity

    Full text link
    A vector-tensor theory of gravity that was introduced in an earlier publication is analyzed in detail and its consequences for early universe cosmology are examined. The multiple light cone structure of the theory generates different speeds of gravitational and matter wave fronts, and the contraction of these light cones produces acausal, superluminary inflation that can resolve the initial value problems of cosmology.Comment: 16 pages, uses amsar

    Triadic resonances in non-linear simulations of a fluid flow in a precessing cylinder

    Full text link
    We present results from three-dimensional non-linear hydrodynamic simulations of a precession driven flow in cylindrical geometry. The simulations are motivated by a dynamo experiment currently under development at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in which the possibility of generating a magnetohydrodynamic dynamo will be investigated in a cylinder filled with liquid sodium and simultaneously rotating around two axes. In this study, we focus on the emergence of non-axisymmetric time-dependent flow structures in terms of inertial waves which - in cylindrical geometry - form so-called Kelvin modes. For a precession ratio Po=Ωp/Ωc=0.014{\rm{Po}}=\Omega_p/\Omega_c=0.014 the amplitude of the forced Kelvin mode reaches up to one fourth of the rotation velocity of the cylindrical container confirming that precession provides a rather efficient flow driving mechanism even at moderate values of Po{\rm{Po}}. More relevant for dynamo action might be free Kelvin modes with higher azimuthal wave number. These free Kelvin modes are triggered by non-linear interactions and may constitute a triadic resonance with the fundamental forced mode when the height of the container matches their axial wave lengths. Our simulations reveal triadic resonances at aspect ratios close to those predicted by the linear theory except around the primary resonance of the forced mode. In that regime we still identify various free Kelvin modes, however, all of them exhibit a retrograde drift around the symmetry axis of the cylinder and none of them can be assigned to a triadic resonance. The amplitudes of the free Kelvin modes always remain below the forced mode but may reach up to 6% of the of the container's angular velocity. The properties of the free Kelvin modes will be used in future simulations of the magnetic induction equation to investigate their ability to provide for dynamo action.Comment: 26 pages, 14 figures, submitted to New J. Phy

    Multivariate Design of Experiments for Engineering Dimensional Analysis

    Full text link
    We consider the design of dimensional analysis experiments when there is more than a single response. We first give a brief overview of dimensional analysis experiments and the dimensional analysis (DA) procedure. The validity of the DA method for univariate responses was established by the Buckingham Π\Pi-Theorem in the early 20th century. We extend the theorem to the multivariate case, develop basic criteria for multivariate design of DA and give guidelines for design construction. Finally, we illustrate the construction of designs for DA experiments for an example involving the design of a heat exchanger

    Solutions to Cosmological Problems with Energy Conservation and Varying c, G and Lambda

    Full text link
    The flatness and cosmological constant problems are solved with varying speed of light c, gravitational coupling strength G and cosmological parameter Lambda, by explicitly assuming energy conservation of observed matter. The present solution to the flatness problem is the same as the previous solution in which energy conservation was absent.Comment: 5 pages, Replaced with LaTex file with minor change

    Quantum-to-classical transition for fluctuations in the early Universe

    Full text link
    According to the inflationary scenario for the very early Universe, all inhomogeneities in the Universe are of genuine quantum origin. On the other hand, looking at these inhomogeneities and measuring them, clearly no specific quantum mechanical properties are observed. We show how the transition from their inherent quantum gravitational nature to classical behaviour comes about -- a transition whereby none of the successful quantitative predictions of the inflationary scenario for the present-day universe is changed. This is made possible by two properties. First, the quantum state for the spacetime metric perturbations produced by quantum gravitational effects in the early Universe becomes very special (highly squeezed) as a result of the expansion of the Universe (as long as the wavelength of the perturbations exceeds the Hubble radius). Second, decoherence through the environment distinguishes the field amplitude basis as being the pointer basis. This renders the perturbations presently indistinguishable from stochastic classical inhomogeneities.Comment: 9 pages, LATE
    • …
    corecore