16,123 research outputs found

    Determination of mass of IGR J17091-3624 from "Spectro-Temporal" variations during onset-phase of the 2011 outburst

    Full text link
    The 2011 outburst of the black hole candidate IGR J17091-3624 followed the canonical track of state transitions along with the evolution of Quasi-Periodic Oscillation (QPO) frequencies before it began exhibiting various variability classes similar to GRS 1915+105. We use this canonical evolution of spectral and temporal properties to determine the mass of IGR J17091-3624, using three different methods, viz : Photon Index (Γ\Gamma) - QPO frequency (ν\nu) correlation, QPO frequency (ν\nu) - Time (day) evolution and broadband spectral modelling based on Two Component Advective Flow. We provide a combined mass estimate for the source using a Naive Bayes based joint likelihood approach. This gives a probable mass range of 11.8 M_{\odot} - 13.7 M_{\odot}. Considering each individual estimate and taking the lowermost and uppermost bounds among all three methods, we get a mass range of 8.7 M_{\odot} - 15.6 M_{\odot} with 90% confidence. We discuss the probable implications of our findings in the context of two component accretion flow.Comment: 10 pages, 5 figures (4 in colour), 2 tables. Accepted for publication in Ap

    Second post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies

    Get PDF
    Starting from the recently obtained 2PN accurate forms of the energy and angular momentum fluxes from inspiralling compact binaries, we deduce the gravitational radiation reaction to 2PN order beyond the quadrupole approximation - 4.5PN terms in the equation of motion - using the refined balance method proposed by Iyer and Will. We explore critically the features of their construction and illustrate them by contrast to other possible variants. The equations of motion are valid for general binary orbits and for a class of coordinate gauges. The limiting cases of circular orbits and radial infall are also discussed.Comment: 38 pages, REVTeX, no figures, to appear in Phys. Rev.

    Pad\'e approximants for truncated post-Newtonian neutron star models

    Full text link
    Pad\'e approximants to truncated post-Newtonian neutron star models are constructed. The Pad\'e models converge faster to the general relativistic (GR) solution than the truncated post-Newtonian ones. The evolution of initial data using the Pad\'e models approximates better the evolution of full GR initial data than the truncated Taylor models. In the absence of full GR initial data (e.g., for neutron star binaries or black hole binary systems), Pad\'e initial data could be a better option than the straightforward truncated post-Newtonian (Taylor) initial data.Comment: 19 pages (RevTeX), 9 eps figures. Three new figures and additional discussion on 1-parameter Pad\'e expansion. Accepted for publication in Physical Review

    First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories

    Full text link
    The first law of black hole mechanics is derived from the Einstein-Maxwell (EM) Lagrangian by comparing two infinitesimally nearby stationary black holes. With similar arguments, the first law of black hole mechanics in Einstein-Yang-Mills (EYM) theory is also derived.Comment: Modified version, major changes made in the introduction. 14 pages, no figur

    Human Posterior Parietal Cortex Plans Where to Reach and What to Avoid

    Get PDF
    In this time-resolved functional magnetic resonance imaging (fMRI) study, we aimed to trace the neuronal correlates of covert planning processes that precede visually guided motor behavior. Specifically, we asked whether human posterior parietal cortex has prospective planning activity that can be distinguished from activity related to retrospective visual memory and attention. Although various electrophysiological studies in monkeys have demonstrated such motor planning at the level of parietal neurons, comparatively little support is provided by recent human imaging experiments. Rather, a majority of experiments highlights a role of human posterior parietal cortex in visual working memory and attention. We thus sought to establish a clear separation of visual memory and attention from processes related to the planning of goal-directed motor behaviors. To this end, we compared delayed-response tasks with identical mnemonic and attentional demands but varying degrees of motor planning. Subjects memorized multiple target locations, and in a random subset of trials targets additionally instructed (1) desired goals or (2) undesired goals for upcoming finger reaches. Compared with the memory/attention-only conditions, both latter situations led to a specific increase of preparatory fMRI activity in posterior parietal and dorsal premotor cortex. Thus, posterior parietal cortex has prospective plans for upcoming behaviors while considering both types of targets relevant for action: those to be acquired and those to be avoided

    Uncertainties inherent in the decomposition of a Transformation

    Full text link
    This contribution adds to the points on the <indeterminacy of special relativity> made by De Abreu and Guerra. We show that the Lorentz Transformation can be composed by the physical observations made in a frame K of events in a frame K-prime viz i) objects in K-prime are moving at a speed v relative to K, ii) distances and time intervals measured by K-prime are at variance with those measured by K and iii) the concept of simultaneity is different in K-prime compared to K. The order in which the composition is executed determines the nature of the middle aspect (ii). This essential uncertainty of the theory can be resolved only by a universal synchronicity as discussed in [1] based on the unique frame in which the one way speed of light is constant in all directions.Comment: 10 pages including an appendix. Published in the European Journal of Physics as a Comment. Eur. J. Phys. 29 (2008) L13-L1

    Many-Body Localization in a Quasiperiodic System

    Get PDF
    Recent theoretical and numerical evidence suggests that localization can survive in disordered many-body systems with very high energy density, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in extended quantum systems far from the zero-temperature limit. It separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting ("ergodic") phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present numerical evidence that many-body localization also occurs in models without disorder but rather a quasiperiodic potential. In one dimension, these systems already have a single-particle localization transition, and we show that this transition becomes a many-body localization transition upon the introduction of interactions. We also comment on possible relevance of our results to experimental studies of many-body dynamics of cold atoms and non-linear light in quasiperiodic potentials.Comment: (12 pages + 3 page appendix, 11 figures) This version has been accepted to PRB. We have clarified certain points and slightly modified the organization of the paper in response to comments by two referee
    corecore