1,454 research outputs found
Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations
High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples
Continuum description of profile scaling in nanostructure decay
The relaxation of axisymmetric crystal surfaces with a single facet below the
roughening transition is studied via a continuum approach that accounts for
step energy g_1 and step-step interaction energy g_3>0. For diffusion-limited
kinetics, free-boundary and boundary-layer theories are used for self-similar
shapes close to the growing facet. For long times and g_3/g_1 < 1, (a) a
universal equation is derived for the shape profile, (b) the layer thickness
varies as (g_3/g_1)^{1/3}, (c) distinct solutions are found for different
g_3/_1, and (d) for conical shapes, the profile peak scales as
(g_3/g_1)^{-1/6}. These results compare favorably with kinetic simulations.Comment: 4 pages including 3 figure
Novel continuum modeling of crystal surface evolution
We propose a novel approach to continuum modeling of the dynamics of crystal
surfaces. Our model follows the evolution of an ensemble of step
configurations, which are consistent with the macroscopic surface profile.
Contrary to the usual approach where the continuum limit is achieved when
typical surface features consist of many steps, our continuum limit is
approached when the number of step configurations of the ensemble is very
large. The model can handle singular surface structures such as corners and
facets. It has a clear computational advantage over discrete models.Comment: 4 pages, 3 postscript figure
Decay of one dimensional surface modulations
The relaxation process of one dimensional surface modulations is re-examined.
Surface evolution is described in terms of a standard step flow model.
Numerical evidence that the surface slope, D(x,t), obeys the scaling ansatz
D(x,t)=alpha(t)F(x) is provided. We use the scaling ansatz to transform the
discrete step model into a continuum model for surface dynamics. The model
consists of differential equations for the functions alpha(t) and F(x). The
solutions of these equations agree with simulation results of the discrete step
model. We identify two types of possible scaling solutions. Solutions of the
first type have facets at the extremum points, while in solutions of the second
type the facets are replaced by cusps. Interactions between steps of opposite
signs determine whether a system is of the first or second type. Finally, we
relate our model to an actual experiment and find good agreement between a
measured AFM snapshot and a solution of our continuum model.Comment: 18 pages, 6 figures in 9 eps file
A Local Computation Approximation Scheme to Maximum Matching
We present a polylogarithmic local computation matching algorithm which
guarantees a (1-\eps)-approximation to the maximum matching in graphs of
bounded degree.Comment: Appears in Approx 201
On computational irreducibility and the predictability of complex physical systems
Using elementary cellular automata (CA) as an example, we show how to
coarse-grain CA in all classes of Wolfram's classification. We find that
computationally irreducible (CIR) physical processes can be predictable and
even computationally reducible at a coarse-grained level of description. The
resulting coarse-grained CA which we construct emulate the large-scale behavior
of the original systems without accounting for small-scale details. At least
one of the CA that can be coarse-grained is irreducible and known to be a
universal Turing machine.Comment: 4 pages, 2 figures, to be published in PR
Modeling and simulation of Li-Ion conduction in POLY(Ethylene Oxide
Prof. Moshe Israeli passed away on Feburary 18, 2007. This paper is dedicated to his memory Polyethylene oxide (PEO) containing a lithium salt (e.g. LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li + ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na +, K +, and other ions, and the PEO helical chain that conducts Li + ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca 0.1nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.
- …
