959 research outputs found

    Schild's Null Strings in Flat and Curved Backgrounds

    Get PDF
    Schild's null (tensionless) strings are discussed in certain flat and curved backgrounds. We find closed, stationary, null strings as natural configurations existing on the horizons of spacetimes which possess such null hypersurfaces. Examples of these are obtained in Schwarzschild and Rindler spacetimes. A dynamic null string is also identified in Rindler spacetime. Furthermore, a general prescription (with explicit examples) is outlined by means of which null string configurations can be obtained in a large class of cosmological backgrounds.Comment: RevTex 3.0, 14 Pages, no figure

    Fe/V and Fe/Co (001) superlattices: growth, anisotropy, magnetisation and magnetoresistance

    Full text link
    Some physical properties of bcc Fe/V and Fe/Co (001) superlattices are reviewed. The dependence of the magnetic anisotropy on the in-plane strain introduced by the lattice mismatch between Fe and V is measured and compared to a theoretical derivation. The dependence of the magnetic anisotropy (and saturation magnetisation) on the layer thickness ratio Fe/Co is measured and a value for the anisotropy of bcc Co is derived from extrapolation. The interlayer exchange coupling of Fe/V superlattices is studied as a function of the layer thickness V (constant Fe thickness) and layer thickness of Fe (constant V thickness). A region of antiferromagnetic coupling and GMR is found for V thicknesses 12-14 monolayers. However, surprisingly, a 'cutoff' of the antiferromagnetic coupling and GMR is found when the iron layer thickness exceeds about 10 monolayers.Comment: Proceedings of the International Symposium on Advanced Magnetic Materials (ISAMM'02), October 2-4, 2002, Halong Bay, Vietnam. REVTeX style; 4 pages, 5 figure

    Tree-Level Unitarity Constraints on the Gravitational Couplings of Higher-Spin Massive Fields

    Get PDF
    We analyse the high-energy behavior of tree-level graviton Compton amplitudes for particles of mass m and arbitrary spin, concentrating on a combination of forward amplitudes that will be unaffected by eventual cross- couplings to other, higher spins. We first show that for any spin larger than 2, tree-level unitarity is already violated at energies well below the Planck scale M, if m << M. We then restore unitarity to this amplitude up to M by adding non-minimal couplings that depend on the curvature and its derivatives, and modify the minimal description - including particle gravitational quadrupole moments - at scales O(1/m).Comment: 12 pages (Latex file, needs FEYNMAN macros), IASSNS-HEP-94/63, NYU-TH-94/05/01, CERN-TH.7388/9

    Identification of the first surrogate agonists for the G protein-coupled receptor GPR132

    Get PDF
    We report the first pharmacological tool agonist for in vitro characterization of the orphan receptor GPR132, preliminary structure–activity relationships based on 32 analogs and a suggested binding mode from docking.M.A.S. was supported by a research scholarship from the Drug Research Academy and Novo Nordisk A/S. D.E.G. and H.B.-O. gratefully acknowledge financial support by the Carlsberg Foundation. D.E.G. and D.S.P. gratefully acknowledges financial support by the Lundbeck Foundation. Nils Nyberg is acknowledged for help with NMR spectroscopy. NMR equipment used in this work was purchased via a grant from The Lundbeck Foundation (R77-A6742).This is the accepted manuscript. The final version is available at http://pubs.rsc.org/en/Content/ArticleLanding/2015/RA/c5ra04804d#!divAbstract

    On the Classical String Solutions and String/Field Theory Duality

    Full text link
    We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.Comment: LaTeX, 15 pages, no figures; V2: some typos corrected; V3: no corrections, to appear in JHE

    Null Branes in String Theory Backgrounds

    Get PDF
    We consider null bosonic p-branes moving in curved space-times and develop a method for solving their equations of motion and constraints, which is suitable for string theory backgrounds. As an application, we give an exact solution for such background in ten dimensions.Comment: 11 pages, LaTeX. Final version, to appear in Phys. Rev.

    String Tension and the Generation of the Conformal Anomaly

    Get PDF
    The origin of the string conformal anomaly is studied in detail. We use a reformulated string Lagrangian which allows to consider the string tension T0T_{0} as a small perturbation. The expansion parameter is the worldsheet speed of light c, which is proportional to T0T_{0} . We examine carefully the interplay between a null (tensionless) string and a tensionful string which includes orders c2 c^{2} and higher. The conformal algebra generated by the constraints is considered. At the quantum level the normal ordering provides a central charge proportional to c2 c^{2} . Thus it is clear that quantum null strings respect conformal invariance and it is the string tension which generates the conformal anomaly.Comment: More references are included. Final version, to appear in Phys.Rev.D. 6 pages, LaTex, no figure

    CD8+ T Cells Restrict Yersinia pseudotuberculosis Infection: Bypass of Anti-Phagocytosis by Targeting Antigen-Presenting Cells

    Get PDF
    All Yersinia species target and bind to phagocytic cells, but uptake and destruction of bacteria are prevented by injection of anti-phagocytic Yop proteins into the host cell. Here we provide evidence that CD8+ T cells, which canonically eliminate intracellular pathogens, are important for restricting Yersinia, even though bacteria are primarily found in an extracellular locale during the course of disease. In a model of infection with attenuated Y. pseudotuberculosis, mice deficient for CD8+ T cells were more susceptible to infection than immunocompetent mice. Although exposure to attenuated Y. pseudotuberculosis generated TH1-type antibody responses and conferred protection against challenge with fully virulent bacteria, depletion of CD8+ T cells during challenge severely compromised protective immunity. Strikingly, mice lacking the T cell effector molecule perforin also succumbed to Y. pseudotuberculosis infection. Given that the function of perforin is to kill antigen-presenting cells, we reasoned that cell death marks bacteria-associated host cells for internalization by neighboring phagocytes, thus allowing ingestion and clearance of the attached bacteria. Supportive of this model, cytolytic T cell killing of Y. pseudotuberculosis–associated host cells results in engulfment by neighboring phagocytes of both bacteria and target cells, bypassing anti-phagocytosis. Our findings are consistent with a novel function for cell-mediated immune responses protecting against extracellular pathogens like Yersinia: perforin and CD8+ T cells are critical for hosts to overcome the anti-phagocytic action of Yops.Molecular and Cellular Biolog

    Effective dynamics of an electrically charged string with a current

    Full text link
    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.Comment: 14 pages, 3 figures, format changed, minor change

    An Infinite Dimensional Symmetry Algebra in String Theory

    Full text link
    Symmetry transformations of the space-time fields of string theory are generated by certain similarity transformations of the stress-tensor of the associated conformal field theories. This observation is complicated by the fact that, as we explain, many of the operators we habitually use in string theory (such as vertices and currents) have ill-defined commutators. However, we identify an infinite-dimensional subalgebra whose commutators are not singular, and explicitly calculate its structure constants. This constitutes a subalgebra of the gauge symmetry of string theory, although it may act on auxiliary as well as propagating fields. We term this object a {\it weighted tensor algebra}, and, while it appears to be a distant cousin of the WW-algebras, it has not, to our knowledge, appeared in the literature before.Comment: 14 pages, Plain TeX, report RU93-8, CTP-TAMU-2/94, CERN-TH.7022/9
    corecore