230 research outputs found

    Selective Dynamic Nuclear Spin Polarization in Spin-Blocked Double-Dot

    Full text link
    We study the mechanism of dynamical nuclear spin polarization by hyperfine interaction in spin-blocked double quantum dot system. We calculate the hyperfine transition rates and solve the master equations for the nuclear spins. Specifically, we incorporate the effects of the nuclear quadrupole coupling due to the doping-induced local lattice distortion and strain. Our results show that nuclear quadrupole coupling induced by the 5% indium substitution can be used to explain the recent experimental observation of missing arsenic NMR signal in the spin-blocked double dots.Comment: 4 pages, 3 figure

    Many Body Effects on Electron Tunneling through Quantum Dots in an Aharonov-Bohm Circuit

    Full text link
    Tunneling conductance of an Aharonov-Bohm circuit including two quantum dots is calculated based on the general expression of the conductance in the linear response regime of the bias voltage. The calculation is performed in a wide temperature range by using numerical renormalization group method. Various types of AB oscillations appear depending on the temperature and the potential depth of the dots. Especially, AB oscillations have strong higher harmonics components as a function of the magnetic flux when the potential of the dots is deep. This is related to the crossover of the spin state due to the Kondo effect on quantum dots. When the temperature rises up, the amplitude of the AB oscillations becomes smaller reflecting the breaking of the coherency.Comment: 21 pages, 11 PostScript figures, LaTeX, uses jpsj.sty epsbox.st

    Kondo Effect in Single Quantum Dot Systems --- Study with Numerical Renormalization Group Method ---

    Full text link
    The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo temperature for each orbital channel can be largely different. The tunneling through the Kondo resonance almost fully develops in the region T \lsim 0.1 T_{K}^{*} \sim 0.2 T_{K}^{*}, where TKT_{K}^{*} is the lowest Kondo temperature when the gate voltage is varied. At high temperatures the conductance changes to the usual Coulomb oscillations type. In the intermediate temperature region, the degree of the coherency of each orbital channel is different, so strange behaviors of the conductance can appear. For example, the conductance once increases and then decreases with temperature decreasing when it is suppressed at T=0 by the interference cancellation between different channels. The interaction effects in the quantum dot systems lead the sensitivities of the conductance to the temperature and to the gate voltage.Comment: 22 pages, 18 figures, LaTeX, to be published in J. Phys. Soc. Jpn. Vol. 67 No. 7 (1998

    Singlet-triplet transition in a single-electron transistor at zero magnetic field

    Full text link
    We report sharp peaks in the differential conductance of a single-electron transistor (SET) at low temperature, for gate voltages at which charge fluctuations are suppressed. For odd numbers of electrons we observe the expected Kondo peak at zero bias. For even numbers of electrons we generally observe Kondo-like features corresponding to excited states. For the latter, the excitation energy often decreases with gate voltage until a new zero-bias Kondo peak results. We ascribe this behavior to a singlet-triplet transition in zero magnetic field driven by the change of shape of the potential that confines the electrons in the SET.Comment: 4 p., 4 fig., 5 new ref. Rewrote 1st paragr. on p. 4. Revised author list. More detailed fit results on page 3. A plotting error in the horizontal axis of Fig. 1b and 3 was corrected, and so were the numbers in the text read from those fig. Fig. 4 was modified with a better temperature calibration (changes are a few percent). The inset of this fig. was removed as it is unnecessary here. Added remarks in the conclusion. Typos are correcte

    Electron-phonon interaction in ultrasmall-radius carbon nanotubes

    Full text link
    We perform analysis of the band structure, phonon dispersion, and electron-phonon interactions in three types of small-radius carbon nanotubes. We find that the (5,5) can be described well by the zone-folding method and the electron-phonon interaction is too small to support either a charge-density wave or superconductivity at realistic temperatures. For ultra-small (5,0) and (6,0) nanotubes we find that the large curvature makes these tubes metallic with a large density of states at the Fermi energy and leads to unusual electron-phonon interactions, with the dominant coupling coming from the out-of-plane phonon modes. By combining the frozen-phonon approximation with the RPA analysis of the giant Kohn anomaly in 1d we find parameters of the effective Fr\"{o}lich Hamiltonian for the conduction electrons. Neglecting Coulomb interactions, we find that the (5,5) CNT remains stable to instabilities of the Fermi surface down to very low temperatures while for the (5,0) and (6,0) CNTs a CDW instability will occur. When we include a realistic model of Coulomb interaction we find that the charge-density wave remains dominant in the (6,0) CNT with TCDWT_{\rm CDW} around 5 K while the charge-density wave instability is suppressed to very low temperatures in the (5,0) CNT, making superconductivity dominant with transition temperature around one Kelvin.Comment: 20 pages. Updated 7/23/0

    Modified Perturbation Theory Applied to Kondo-Type Transport through a Quantum Dot under a Magnetic Field

    Full text link
    Linear conductance through a quantum dot is calculated under a finite magnetic field using the modified perturbation theory. The method is based on the second-order perturbation theory with respect to the Coulomb repulsion, but the self-energy is modified to reproduce the correct atomic limit and to fulfill the Friedel sum rule exactly. Although this method is applicable only to zero temperature in a strict sense, it is approximately extended to finite temperatures. It is found that the conductance near electron-hole symmetry is suppressed by the application of the magnetic field at low temperatures. Positive magnetoconductance is observed in the case of large electron-hole asymmetry.Comment: 4pages, 5 figure

    Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Get PDF
    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation

    Tunable Kondo effect in a single donor atom

    Full text link
    The Kondo effect has been observed in a single gate-tunable atom. The measurement device consists of a single As dopant incorporated in a Silicon nanostructure. The atomic orbitals of the dopant are tunable by the gate electric field. When they are tuned such that the ground state of the atomic system becomes a (nearly) degenerate superposition of two of the Silicon valleys, an exotic and hitherto unobserved valley Kondo effect appears. Together with the regular spin Kondo, the tunable valley Kondo effect allows for reversible electrical control over the symmetry of the Kondo ground state from an SU(2)- to an SU(4) -configuration.Comment: 10 pages, 8 figure

    From the Kondo Regime to the Mixed-Valence Regime in a Single-Electron Transistor

    Full text link
    We demonstrate that the conductance through a single-electron transistor at low temperature is in quantitative agreement with predictions of the equilibrium Anderson model. When an unpaired electron is localized within the transistor, the Kondo effect is observed. Tuning the unpaired electron's energy toward the Fermi level in nearby leads produces a cross-over between the Kondo and mixed-valence regimes of the Anderson model.Comment: 3 pages plus one 2 page postscript file of 5 figures. Submitted to PR

    Excess Kondo resonance in a quantum dot device with normal and superconducting leads: the physics of Andreev-normal co-tunneling

    Full text link
    We report on a novel Kondo phenomenon of interacting quantum dots coupled asymmetrically to a normal and a superconducting lead. The effects of intradot Coulomb interaction and Andreev tunneling give rise to Andreev bound resonances. As a result, a new type of co-tunneling process which we term Andreev-normal co-tunneling, is predicted. At low temperatures, coherent superposition of these co-tunneling processes induces a Kondo effect in which Cooper pairs directly participate formation of a spin singlet, leading to four Kondo resonance peaks in the local density of states, and enhancing the tunneling current.Comment: 4 pages, 2 figures, Late
    corecore