12 research outputs found

    The Water Permeability Reduction After Successive Hypo-Osmotic Shocks in Kidney Principal Cells is Apically Regulated

    No full text
    Background/Aims: Renal principal cells maintain their intracellular water and electrolyte content despite significant fluctuations of the extracellular water and salt concentrations. Their water permeability decreases rapidly (within a few seconds) after successive hypo-osmotic shocks. Our aim was to investigate the contribution of the apical and basolateral surface to this effect and the potential influence of fast reduction in AQP-2, -3 or -4 plasma membrane content. Methods: Rat principal cells of kidney collecting duct fragments underwent hypoosmotic challenge applied apically or basolaterally and the regulatory volume decrease (RVD) was measured by the calcein quenching method. The AQP -2, -3 and -4 content of the plasma membrane fraction was quantified by Western blotting. Results: The hypo-osmotic shock applied apically causes rapid swelling with high apparent water permeability and fast RVD. An identical successive shock after 15-20 sec causes significantly lower swelling rate with 3-fold reduction in apparent water permeability. This reaction is accompanied by AQP2 decrease in the plasma membrane while AQP3 and AQP4 are unaffected. The contribution of the basolateral cell surface to RVD is significantly lower than the apical. Conclusion: These results indicate that in principal cells the effective mechanism of RVD is mainly regulated by the apical cell plasma membrane. Copyright (C) 2014 S. Karger AG, Base

    Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks

    No full text
    Outer Medullary Collecting Duct (OMCD) principal cells are exposed to significant changes of the extracellular osmolarity and thus the analysis of their regulatory volume decrease (RVD) function is of great importance in order to avoid cell membrane rupture and subsequent death. In this paper we provide a sub-second temporal analysis of RVD events occurring after two successive hypo-osmotic challenges in rat kidney OMCD principal cells. We performed experimental cell volume measurements and created a mathematical model based on our experimental results. As a consequence of RVD the cell expels part of intracellular osmolytes and reduces the permeability of the plasma membrane to water. The next osmotic challenge does not cause significant RVD if it occurs within a minute after the primary shock. In such a case the cell reacts as an ideal osmometer. Through our model we provide the basis for further detailed studies on RVD dynamical modeling. (C) 2013 Elsevier Inc. All rights reserved

    Proteolytic activation of the epithelial sodium channel (ENaC) by factor VII activating protease (FSAP) and its relevance for sodium retention in nephrotic mice

    Get PDF
    Abstract Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice ( Habp2 −/− ) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2 +/+ but not of Habp2 −/− mice. However, Habp2 −/− mice were not protected from sodium retention compared to nephrotic Habp2 +/+ mice. Western blot analysis revealed that in nephrotic Habp2 −/− mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2 +/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice

    Proteolytic activation of the epithelial sodium channel (ENaC) by factor VII activating protease (FSAP) and its relevance for sodium retention in nephrotic mice.

    No full text
    Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2-/-) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2-/- mice. However, Habp2-/- mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2-/- mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice
    corecore