38 research outputs found

    Sites of synthesis of chromogranins A and B in the human brain

    Full text link
    The sites of synthesis of the chromogranins A and B, and their potential processed peptides, were examined by quantitating the levels of chromogranin A and B mRNA in various regions of the human brain by Northern blot analysis. Chromogranin A and B mRNA expression in the brain is region-specific and confined to grey matter. In situ hybridization histochemistry detected chromogranin A and B mRNA in pyramidal neurons of human cerebral cortex. Cell-specific expression in subpopulations of cerebrocortical neurons suggest that chromogranin A and B gene products may play a role in central neuronal function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30124/1/0000500.pd

    Immunological characterization of chromogranins A and B and secretogranin II in the bovine pancreatic islet

    Get PDF
    Antisera against chromogranin A and B and secretogranin II were used for analysing the bovine pancreas by immunoblotting and immunohistochemistry. All three antigens were found in extracts of fetal pancreas by one dimensional immunoblotting. A comparison with the soluble proteins of chromaffin granules revealed that in adrenal medulla and in pancreas antigens which migrated identically in electrophoresis were present. In immunohistochemistry, chromogranin A was found in all pancreatic endocrine cell types with the exception of most pancreatic polypeptide-(PP-) producing cells. For chromogranin B, only a faint immunostaining was obtained. For secretorgranin II, A-and B-cells were faintly positive, whereas the majority of PP-cells exhibited a strong immunostaining for this antigen. These results establish that chromogranins A and B and secretogranin II are present in the endocrine pancreas, but that they exhibit a distinct cellular localization

    A new human chromogranin A (CgA) immunoradiometric assay involving monoclonal antibodies raised against the unprocessed central domain (145-245)

    Get PDF
    Chromogranin A (CgA), a major protein of chromaffin granules, has been described as a potential marker for neuroendocrine tumours. Because of an extensive proteolysis which leads to a large heterogeneity of circulating fragments, its presence in blood has been assessed in most cases either by competitive immunoassays or with polyclonal antibodies. In the present study, 24 monoclonal antibodies were raised against native or recombinant human CgA. Their mapping with proteolytic peptides showed that they defined eight distinct epitopic groups which spanned two-thirds of the C-terminal part of human CgA. All monoclonal antibodies were tested by pair and compared with a reference radioimmunoassay (RIA) involving CGS06, one of the monoclonal antibodies against the 198–245 sequence. It appears that CgA C-terminal end seems to be highly affected by proteolysis and the association of C-terminal and median-part monoclonal antibodies is inadequate for total CgA assessment. Our new immunoradiometric assay involves two monoclonal antibodies, whose contiguous epitopes lie within the median 145–245 sequence. This assay allows a sensitive detection of total human CgA and correlates well with RIA because dibasic cleavage sites present in the central domain do not seem to be affected by degradation. It has been proved to be efficient in measuring CgA levels in patients with neuroendocrine tumours. © 1999 Cancer Research Campaig

    Status of Terra MODIS Operation, Calibration, and Performance

    No full text
    Since launch in December 1999, Terra MODIS has successfully operated for nearly 15 years, making continuous observations. Data products derived from MODIS observations have significantly contributed to a wide range of studies of key geophysical parameters of the earth's eco-system of land, ocean, and atmosphere, and their changes over time. The quality of MODIS data products relies on the dedicated effort to monitor and sustain instrument health and operation, to calibrate and update sensor parameters and properties, and to improve calibration algorithms. MODIS observations are made in 36 spectral bands, covering wavelengths from visible to long-wave infrared. The reflective solar bands (1-19 and 26) are primarily calibrated by a solar diffuser (SD) panel and regularly scheduled lunar observations. The thermal emissive bands (20-25 and 27- 36) calibration is referenced to an on-board blackbody (BB) source. On-orbit changes in the sensor spectral and spatial characteristics are monitored by a spectroradiometric calibration assembly (SRCA). This paper provides an overview of Terra MODIS on-orbit operation and calibration activities and implementation strategies. It presents and summarizes sensor on-orbit performance using nearly 15 years of data from its telemetry, on-board calibrators, and lunar observations. Also discussed in this paper are changes in sensor characteristics, corrections applied to maintain MODIS level 1B (L1B) data quality, and efforts for future improvements
    corecore