21 research outputs found
Sur une conjecture de Tadic
Let F be a non-archimedian field of characteristic zero and D a central division algebra over F of finite dimension d2. For all positive integer r, set G\u27r = GL(r,D).
In 1990, M. Tadic gave a conjectural classification of the unitary dual of the G\u27r, and five statements denoted U0, ... , U4, which imply the classification. M. Tadic proved U3 and U4. Also, U0 and U1 imply U2. These statements, and the resulting classification are the natural generalization of the case D = F completely solved by M. Tadic in 1986. Here we prove U1. Thus, the classification of the unitary dual of the G\u27r is now reduced to the conjecture U0, which states that a parabolically induced representation from an irreducible unitary representation is irreducible
Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations
In this paper we show a local Jacquet-Langlands correspondence for all
unitary irreducible representations. We prove the global Jacquet-Langlands
correspondence in characteristic zero. As consequences we obtain the
multiplicity one and strong multiplicity one theorems for inner forms of GL(n)
as well as a classification of the residual spectrum and automorphic
representations in analogy with results proved by Moeglin-Waldspurger and
Jacquet-Shalika for GL(n).Comment: 49 pages; Appendix by N. Grba
Unitary Dual of GL_n at archimedean places and global Jacquet-Langlands correspondence
In [7], results about the global Jacquet-Langlands correspondence, (weak and
strong) multiplicity-one theorems and the classification of automorphic
representations for inner forms of the general linear group over a number field
are established, under the condition that the local inner forms are split at
archimedean places. In this paper, we extend the main local results of [7] to
archimedean places so that this assumption can be removed. Along the way, we
collect several results about the unitary dual of general linear groups over
\bbR, \bbC or \bbH of independent interest
On unitarizability in the case of classical p-adic groups
In the introduction of this paper we discuss a possible approach to the
unitarizability problem for classical p-adic groups. In this paper we give some
very limited support that such approach is not without chance. In a forthcoming
paper we shall give additional evidence in generalized cuspidal rank (up to)
three.Comment: This paper is a merged and revised version of ealier preprints
arXiv:1701.07658 and arXiv:1701.07662. The paper is going to appear in the
Proceedings of the Simons Symposium on Geometric Aspects of the Trace Formul