15,889 research outputs found

    The effect of military load carriage on ground reaction forces

    Get PDF
    Load carriage is an inevitable part of military life both during training and operations. Loads carried are frequently as high as 60% bodyweight, and this increases injury risk. In the military, load is carried in a backpack (also referred to as a Bergen) and webbing, these combined form a load carriage system (LCS). A substantial body of literature exists recording the physiological effects of load carriage; less is available regarding the biomechanics. Previous biomechanical studies have generally been restricted to loads of 20% and 40% of bodyweight, usually carried in the backpack alone. The effect of rifle carriage on gait has also received little or no attention in the published literature. This is despite military personnel almost always carrying a rifle during load carriage. In this study, 15 male participants completed 8 conditions: military boot, rifle, webbing 8 and 16 kg, backpack 16 kg and LCS 24, 32 and 40 kg. Results showed that load added in 8 kg increments elicited a proportional increase in vertical and anteroposterior ground reaction force (GRF) parameters. Rifle carriage significantly increased the impact peak and mediolateral impulse compared to the boot condition. These effects may be the result of changes to the vertical and horizontal position of the body's centre of mass, caused by the restriction of natural arm swing patterns. Increased GRFs, particularly in the vertical axis, have been positively linked to overuse injuries. Therefore, the biomechanical analysis of load carriage is important in aiding our understanding of injuries associated with military load carriage

    Dark Matter and Collider Phenomenology with two light Supersymmetric Higgs Bosons

    Full text link
    Recently, it has been pointed out that two different excesses of events observed at LEP could be interpreted as the CP-even Higgs bosons of the MSSM with masses of approximately 98 and 114 GeV. If this is the case, the entire MSSM Higgs sector is required to be light. In this article, we explore such a scenario in detail. We constrain the Higgs and supersymmetric spectrum using BB physics constraints as well as the magnetic moment of the muon. We then point out the implications for neutralino dark matter -- next generation direct detection experiments will be sensitive to all MSSM models with such a Higgs sector. Finally, we find that all models outside of a very narrow corridor of the parameter space have a charged Higgs boson which will be observed at the LHC. In those exceptional models which do not contain an observable charged Higgs, a light top squark will always be seen at the LHC, and likely at the Tevatron.Comment: 12 pages, 18 figure

    Towards low-latency real-time detection of gravitational waves from compact binary coalescences in the era of advanced detectors

    Get PDF
    Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation before the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.Comment: 19 pages, 6 figures, for PR

    Cascade diagrams for depicting complex interventions in randomised trials

    Get PDF
    Many medical interventions—particularly non-pharmacological ones—are complex, consisting of multiple interacting components targeted at different organisational levels.1 2 Published descriptions of complex interventions often do not contain enough detail to enable their replication.2-5 Reports of behaviour change interventions should include descriptions of setting, mode, intensity, and duration, and characteristics of the participants.6 Graphical methods, such as that showing the relative timing of assessments and intervention components,7 may improve clarity of reporting. However, these approaches do not reveal the connections between the different “actors” in a complex intervention.8 Different audiences may want different things from a description of an intervention, but visualising relationships between actors can clarify crucial features such as the fidelity with which the intervention is passed down a chain of actors and possible routes of contamination between treatment arms. Here we describe a new graphical approach—the cascade diagram—that highlights these potential problems

    Implications of CoGeNT and DAMA for Light WIMP Dark Matter

    Get PDF
    In this paper, we study the recent excess of low energy events observed by the CoGeNT collaboration, and discuss the possibility that these events originate from the elastic scattering of a light (m_DM ~ 5-10 GeV) dark matter particle. We find that such a dark matter candidate may also be capable of generating the annual modulation reported by DAMA, as well as the small excess recently reported by CDMS, without conflicting with the null results from other experiments, such as XENON10. A dark matter interpretation of the CoGeNT and DAMA observations favors a region of parameter space that is especially attractive within the context of Asymmetric Dark Matter models. In such models, the cosmological dark matter density arises from the baryon asymmetry of the universe, naturally leading to the expectation that m_DM ~ 1-10 GeV. We also discuss neutralino dark matter from extended supersymmetric frameworks, such as the NMSSM. Lastly, we explore the implications of such a dark matter candidate for indirect searches, and find that the prospects for detecting the neutrino and gamma ray annihilation products of such a particle to be very encouraging.Comment: 16 pages, 14 figures. v2: references added, fig 4 and surrounding discussion modified

    Initial subjective load carriage injury data collected by interviews and questionnaires

    Get PDF
    This study aimed to identify the types, incidence, and causes of any potential load carriage injuries or discomfort as a result of a 2-hour, forced-speed, treadmill march carrying 20 kg. Subjective load carriage data were collected, through both interviews and questionnaires, from relatively inexperienced soldiers after a period of load carriage. Results from the study showed that the upper limb is very susceptible to short-term discomfort, whereas the lower limb is not. The shoulders were rated significantly more uncomfortable then any other region, and blisters were experienced by ∼60% of participants. Shoulder discomfort commences almost as soon as the load is added and increases steadily with time; however, foot discomfort increases more rapidly once the discomfort materializes. In conclusion, early development of shoulder pain or blisters may be a risk factor for severe pain or noncompletion of a period of prolonged load carriage
    corecore