260 research outputs found

    Valuation on the Frontier: Calibrating Actual and Hypothetical Statements of Value

    Get PDF
    The lack of robust evidence showing that hypothetical behavior directly maps into real actions remains a major concern for proponents of stated preference nonmarket valuation techniques. This article explores a new statistical approach to link actual and hypothetical statements. Using willingness-topay field data on individual bids from sealed-bid auctions for a $350 baseball card, our results are quite promising. Estimating a stochastic frontier regression model that makes use of data that any contingent valuation survey would obtain, we derive a bid function that is not statistically different from the bid function obtained from subjects in an actual auction. If other data can be calibrated similarly, this method holds significant promise since an appropriate calibration scheme, ex ante or ex post, can be invaluable to the policy maker that desires more accurate estimates of use and nonuse values for nonmarket goods and services.calibration, contingent valuation, stochastic frontier

    Modeling a Nb\u3csub\u3e3\u3c/sub\u3eSn Cryounit in GPT at UITF

    Get PDF
    Nb3Sn is a prospective material for future superconducting radio frequency (SRF) accelerator cavities. Compared to conventional niobium, the material can achieve higher quality factors, higher temperature operation, and potentially higher accelerating gradients (Eacc ≈ 96 MV/m). In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb3Sn cavities. We studied the effects of the buncher cavity and varied the gun voltage from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb3Sn five-cell cavities\u27 energy gains with the framework of the General Particle Tracer (GPT). Our calculations show the beam goes cleanly through the unit. There is full energy gain out of the second SRF cavity but not from the first SRF cavity due to non-relativistic phase shifts

    Fiber Optic Accelerometer With Centrally Supported Flexural Disk

    Get PDF
    PatentAn accelerometer or seismometer has an elastic disk bearing a mass distributed peripherally around the disk. The disk is supported for flexure and for isolation from mounting strain by a stob centrally through the disk. The accelerometer or seismometer has a pair of flat spirals of optical fiber, each spiral being fixedly attached to a corresponding disk side so that disk flexure lengthens a spiral on one disk side and shortens a spiral on an oppositely facing disk side and so that temperature differences between the spirals are minimized. The pair of spirals are connected as legs of a fiber optic interferometer so that the interferometer provides an output corresponding to the flexure. Several of the disks and asociated pairs of spirals may be coaxially mounted to provide increased sensitivity

    Narrow-Band Emission in Thomson Sources Operating in the High-Field Regime

    Get PDF
    We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the up-shifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications and reduces the spectral brilliance. We show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Furthermore, we suggest a practical realization of this compensation idea in terms of a chirped-beam-driven free electron laser oscillator configuration and show that significant compensation can occur, even with the imperfect matching to be expected in these conditions

    Nonlinear natural engine: Model for thermodynamic processes in mesoscale systems

    Full text link

    Simultaneous Optimization of the Cavity Heat Load and Trip Rates in Linacs Using a Genetic Algorithm

    Get PDF
    In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab\u27s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines

    Beam Dynamics Studies of Parallel-Bar Deflecting Cavities

    Get PDF
    We have performed three-dimensional simulations of beam dynamics for parallel-bar transverse electromagnetic mode (TEM) type RF separators: normal- and superconducting. The compact size of these cavities as compared to conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of eight 2-cell normal conducting cavities or a one- or two-cell superconducting structure are enough to produce the required vertical displacement at the Lambertson magnet. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam

    Beam Dynamics Studies for Transverse Electromagnetic Mode Type rf Deflectors

    Get PDF
    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam
    corecore