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Simultaneous optimization of the cavity heat load and trip rates
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In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing
objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility
linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant
improvement to the standard linac energy management tool and thereby could lead to a more efficient
Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle
of how a genetic algorithm can be used for optimizing other linac-based machines.

DOI: 10.1103/PhysRevSTAB.17.101003 PACS numbers: 07.05.Tp, 41.75.-i

I. INTRODUCTION

The Continuous Electron Beam Accelerator Facility
(CEBAF) is a superconducting facility located at Jefferson
Lab. It provides a continuous electron beam of up to 12 GeV
for use in nuclear physics experiments in up to four
experimental halls simultaneously. CEBAF features two
linacs, North and South, each with 200 multicell elliptical
superconducting radio frequency (SRF) cavities. Each cavity
has a tunable gradient which can be adjusted within its
operational range to reproduce the total design energy gain
per pass through the linac. Different configurations of the
cavity gradients lead to different heat consumption and trip
rates (related to cavity design). Cavity trips interrupt the
machine operation and reduce the overall time for useful data
collection in the experimental halls.
The study is motivated by the desire to find the optimal

set of cavity gradients needed to maximize science and
minimize the cost of operation (electricity bill). Realizing
that a large part of Jefferson Lab’s multimillion dollar
monthly electricity bill is due to cryogenics, even modest
improvements in the heat load may translate into millions of
dollars in savings over the lifetime of CEBAF operations.
Cavity heat load and radio frequency (rf) trip rates

are competing objectives—minimizing one quantity will
increase the other—necessitating a multiobjective optimiza-
tion. Successfully implemented multiobjective optimization

will provide a set of optimal solutions clearly showing the
trade-offs between the competing objectives. The ability to
know these trade-offs is invaluable in every-day linac
operations. For instance, knowing how much money oper-
ating the linacs at six trips per hour as opposed to five saves
will lead to judicious experiment and operation planning.
The remainder of the paper is organized as follows.

Section II describes the details of the CEBAF linacs at
Jefferson Lab. Section III outlines the optimization prob-
lem, shows how its simplified, single-objective version can
be solved using Lagrange multipliers (Sec. III A) and then
how a genetic algorithm (GA) can be used to solve the full
multiobjective problem (Sec. III B). Section IV presents the
results of the multiobjective optimization. Finally, Sec. V
summarizes the findings and discusses their relevance for
linac-based machines in general.

II. CEBAF LINACS

CEBAF has two linacs with 25 cryomodules, each
containing eight cavities, for a total of 400 cavities. The
cavities are grouped in eight-cavity cryomodules called
C25, C50 and C100, labeled based on the energy gain
expected in MeV per cryomodule. The initial complement,
used during the 6 GeV era, consisted of 40 cryomodules,
320 cavities, with 50 cm accelerating length. The recent
addition, which ushered the 12 GeV era, consists of ten
cryomodules, 80 cavities, of 70 cm active length. Surface to
accelerating gradient ratio is 2.56∶1 in the original comple-
ment and 2.08∶1 in the new complement.
Using fault data acquired beginning on January 30,

1995, a total of 1563 exponential models [see Eq. (2) in
Sec. III] was developed, about five per cavity, due to
changing conditions during the following 17 years. Field
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emission during the first half of the period is discussed
in [1]. The contemporary set of models was input to the
linac energy manager (LEM) optimization tool which
initially equally weighted 2 K heating and fault rate [2],
but which soon excluded the former because the solutions
found were too unstable.
In 2003 a hurricane hit CEBAF. The uncontrolled warm-

up and the methods used in the subsequent evacuation of
the cavity volumes caused a substantial loss in potential. A
refurbishment program was instituted in 2006, and the first
refurbished cryomodule was installed in April 2007. Eleven
cryomodules have been refurbished to date. At installation,
they provided 50 MeV=c gain, but over the course of three
years they lost about 20% of capacity. Finally, as part of the
12 GeVupgrade project, ten cryomodules with eight 70 cm
cavities were added, designed to provide 100 MeV=c each
and designated C100 [2].
The linac energy manager (LEM) program in use since

1999 minimizes fault rate by setting cavities which do not
fault atmaximumgradient andmakesup the remainder of the
needed momentum gain by optimizing the C25 cavities
using Lagrangemultipliers on the set of exponential models.
Total heat (refrigerator) constraints are applied manually.
The rf gradients were calibrated using the accelerator arcs as
spectrometers. Cavity quality factors, Qs, were obtained
near the operating gradient by measuring the valve response
to resistive heating, turning off individual cavities, and
monitoring the valve response over tens of minutes.
For each cavity in the linac the LEM program requires

(i) cavity designator; (ii) input Q so required rf power may
be calculated (constraint); (iii) maximum gradient deter-
mined during commissioning or beam operations; (iv) an
allowance for detuning via acoustic noise which alters
cavity length/frequency; (v) for C25 cavities, the gradient
at which a fault occurs every eight hours; (vi) for C25
cavities, the slope of the exponential fit; (vii) Q0 of the
fundamental accelerating mode at a representative operat-
ing gradient, for use in calculating heat generated;
(viii) cavity length, 0.5 m for C25 and C50 cavities
and 0.7 m for C100. For the newer cavities, C50 and
C100, as well as a small fraction of the old C25 cavities,
not enough data exist for a reliable exponential model to
be developed. From the optimization standpoint, these
cavities are treated as if they never trip.
Moore’s law now allows a more sophisticated algorithm,

one which can provide a stable solution with respect to both
fault rate and heat load, to be solved in a few minutes when
an rf system fails and the allowed momentum gain from a
cavity must be substantially reduced or set to zero.
The results presented in this paper are based on the

data from the 2009 PVDIS run during which the CEBAF
was operated at 6.068 GeV with 500 μA linac beam
current. Extending this formalism to data for the new
12 GeV CEBAF configuration when it becomes available is
straightforward.

III. THE OPTIMIZATION PROBLEM

Simultaneously optimizing cavity heat load and trip rates
is a multiobjective optimization problem. Since there are
Nc cavity gradients Gi to adjust (“knobs to turn”), this is
also a Nc-dimensional problem. Each cavity gradient Gi,
measured in MV/m, is restricted to the domain ½3; Di�,
where 3 MV=m is the lower limit of the stability of the
control system and Di is the “drive-high”—the maximum
gradient at which a cavity can be safely set, which varies
from cavity to cavity.
The cavity power transfer to the liquid helium for

CEBAF SRF cavities is given in [3]

Pð ~GÞ ¼
XNc

i¼1

G2
i Li

ciQðGiÞ
; ð1Þ

where ~G ¼ ðG1; G2;…; GNc
Þ, the cavity length Li ¼ 0.5m

and shunt impedance ci ¼ 960 Ω=m for C25/C50, and
Li ¼ 0.7 m and ci ¼ 968 Ω=m for C100. QiðGiÞ is the
measured (unloaded) cavity quality factor, which tends to
decrease as Gi increases. In this implementation, given the
data modeled,Qi is constant for each cavity [QiðGiÞ ¼ Qi].
The cavity trip rate exponential model (per hour) is

reported in [2] as

Tð ~GÞ ¼ 3600
XNc

i¼1

exp ½Aþ BiðGi − FiÞ�; ð2Þ

where A ¼ −10.26813067, Bi the model trip slope and Fi
the fault gradient. As with any GA simulation, the quality
of the results obtained depend on the appropriateness of the
underlying model.
To be feasible, any solution produced by the optimi-

zation must also satisfy the constraint that the total
energy gain in the linac is within 2 MeV of a prescribed
energy Elinac.
Therefore, the full multiobjective, multidimensional,

constrained optimization problem becomes

Minimize Pð ~GÞ; Tð ~GÞ

Subject to
���Elinac −

XNc

i¼1

GiLi

��� < 2;

3 ≤ Gi ≤ Di: ð3Þ

A. Single-objective optimization using
Lagrange multipliers

It is both pedagogical and illuminating for a moment to
study two related single-objective problems to discern
the expected asymptotic behavior of the multiobjective
problem: (i) constrained minimization of the heat load
only and (ii) constrained optimization of the trip rate only.
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A single-objective optimization is significantly simpler and
can be implemented using a number of standard tools. One
such tool is an approach that utilizes Lagrange multipliers.
First the Lagrangian for the constrained single-objective

optimization problem is defined as

Lð ~G; λÞ ¼ fð ~GÞ þ λ

�
Elinac −

XNc

i¼1

GiLi

�
; ð4Þ

where fð ~GÞ is either Pð ~GÞ or Tð ~GÞ, and λ is a Lagrange
multiplier. For simplicity and without loss of generality,
the constraint imposed here is an equality constraint that the
total energy gain in the linac must exactly equal the
prescribed energy Elinac (not within 2 MeV as formulated
in the full multiobjective version). This optimization does
not confine the cavity gradients Gi to their operational
ranges ½3; Di�. The solution to the constrained problem
is obtained upon setting the partial derivatives of the
Lagrangian with respect to the coordinates Gi and the
Lagrange multiplier λ to zero:

∂Lð ~G; λÞ
∂ðGi; λÞ

¼ 0; i ¼ 1; Nc: ð5Þ

While taking a partial derivative with respect to the
Lagrange multiplier λ only ensures that the constraint is
satisfied, the other derivatives lead to the optimal solution:

∂Pð ~GÞ
∂Gi

¼ ∂
∂Gi

�
G2

i

QiðGiÞ
�
Li

ci
≈
2GiLi

ciQi
¼ λPLi ¼ const;

∂Tð ~GÞ
∂Gi

¼ 3600Bi exp ½Aþ BiðGi − FiÞ� ¼ λTLi ¼ const:

ð6Þ
≈ denotes our treatment ofQi as a constant, independent of
Gi, which we carry forward throughout the remainder of
the paper. After solving for Gi and substituting into the
constraint,

Gi ¼
λP
2
ciQi; λP ¼ 2ElinacPNc

i¼1 ciQiLi

;

Gi ¼
ln λTLi

3600Bi
−A

Bi
þFi;

λT ¼ exp

�
δE−

PNc
i¼1

Li
Bi
ln Li

3600BiþA
PNc

i¼1
Li
Bi
−
PNc

i¼1FiLiPNc
i¼1

Li
Bi

�
;

ð7Þ

where δE ¼ Elinac −
PNc

i¼1DiLi, with the summation
including only values of i for which Bi ¼ 0. Combining
cavity parameters on one side of the equation and constants
on the other gives the conserved quantities of the two
single-objective optimizations:

Gi

Qi
¼ λPci

2
;

Bi exp ½Aþ BiðGi − FiÞ� ¼
λTLi

3600
: ð8Þ

These quantities are plotted in Fig. 1. Replacing the
equality constraint with the inequality constraint, i.e.,
allowing for a small scatter in total energy gain within
2 MeVaround the nominal linac energy Elinac will translate
into a small scatter in the conserved quantities, as will be
shown in the next section.
The solutions of the single-objective optimization—

minimizing the heat load only or the trip rates only—
provide the asymptotic behavior of the multiobjective
optimization that will be described in the next section.
Such trade-off solutions obtained from the multiobjective
optimization—those that judiciously minimize both objec-
tive functions simultaneously—will be more or less
bunched around the conserved quantities.
These analytical solutions obtained by solving the

single-objective constrained optimization using Lagrange
multipliers are not only pedagogic in that they describe the
asymptotic behavior of the full multiple-objective optimiza-
tion, but also useful in providing theoretical range on the
values of the objective functions. In particular, the theoretical
minimum heat load is given by the value of the single-
objective minimization of the heat load only, while the
maximum heat load is computed from the set of cavity gradi-
ents corresponding to the solution of the single-objective
minimization of the trip rate. Similarly, the theoretical
minimum trip rate is given by thevalue of the single-objective
minimization of the trip rate only, while the maximum trip
rate is computed from the set of cavity gradients correspond-
ing to the solution of the single-objective minimization of the
heat load. For the configuration considered here, the theo-
retical operational ranges on the heat load are [1015, 1405]W
for the North linac and [948, 1437] W for the South
linac, while the theoretical operational ranges on the trip
rate are ½0.74; 6 × 109� per hour for the North linac and
½0.2; 4 × 1014� per hour for the South linac.
When comparing these results to the full multiobjective

optimization, one has to remember that this implementation
using Lagrange multipliers does not ensure (by design) that
the cavity gradientsGi are within operational ranges ½3; Di�.
Therefore, the Lagrange multiplier approach implemented
here, while qualitatively accurate, only provides a rough
quantitative estimate on the full optimization problem.
The Appendix outlines an interesting concept of casting

often-difficult multiobjective optimization as a set of single-
objective optimizations.

B. Multiobjective optimization using a
genetic algorithm

The solutions obtained from the multiobjective optimi-
zation will comprise a Pareto-optimal front: a set of
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nondominated solutions to the optimization problem.
A solution is defined as nondominated if there exist no
other solutions for which all objective functions are more
optimal. The concept of nondominance is invoked to
provide a gradation among all feasible solutions for a
multiobjective optimization (Fig. 2).
The GA-based multiobjective optimization uses the plat-

form and programming language interface for search algo-
rithms (PISA) developed at ETH Zürich [4,5] and alternate
PISA (APISA) from Cornell University [6]. PISA is a
modular test bed system for GAs, which separates the GA
parent selection process from the optimization problem
evaluation and population generation processes into two
programs: the selector and the variator. This design allows
for easy application of different GA selection algorithms,
selector programs, to several academic bounded-domain
optimization problems for performance and convergence
comparisons. APISA expands the functionality of PISA
to provide support for strict inequality constraints.
This paradigm has solved a number of multidimensional,
single-objective and multiobjective problems in accelerator
physics, as described in [7–9]. A pedagogical, self-contained
overview of the GA-based optimization is given in [7].

The GA-based simulation starts with a random popula-
tion of individuals with different operational gradients Gi,
each sampling its allowed range ½3; Di�without a bias. Only
individuals which satisfy the energy constraint are kept in
the pool of available solutions. The selector strategy is the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [10],
mostly encouraged by its successes in earlier work [7,9,11].
An early attempt to use GA-based methods to simulta-

neously optimize the cavity heat load and trip rates [12]
established the proof of concept that the GA-based methods
can be used for improving the heat load given the preset
limit on the trip rates. The study stopped short of being
operationally useful due to two important issues: (i) the two
objective functions, cavity heat load and trip rates, were
combined into one, thereby resulting in a single-objective
optimization and collapsing the Pareto-optimal front to a
single point (see the Appendix); (ii) the optimization was
carried out in PERL interpreted scripting language, which is
extremely slow when compared to compiled languages like
C. The important advance of this work over the earlier
study is that the GA optimization implemented here is fully
multiobjective—it cultivates the entire Pareto-optimal front
throughout the simulation, enabling a complete picture of

FIG. 1. Plots of the two conserved quantities given in Eq. (8)—Gi=Qi shown in red and Bi exp ½Aþ BiðGi − FiÞ� shown in blue—for
the heat load only minimization (top row) and the trip rate minimization (bottom row) for the CEBAF’s North Linac (left column) and
South Linac (right column). Solid lines represent the analytically computed values of the conserved quantities.

BALŠA TERZIĆ et al. Phys. Rev. ST Accel. Beams 17, 101003 (2014)

101003-4



the trade-off between the two competing objectives.
Furthermore, the GA-based code used here is written in
C, leading to a substantial speedup over the earlier
implementation in PERL and reaching the stringent opera-
tional specifications on execution time.

1. Increasing efficiency of the simulation through
additional constraints

The constrained multiobjective problem given in
Eq. (3) only features a single constraint specifying how
the dependent variables (cavity gradients Gi) combine to
satisfy the total energy gain requirement. When no explicit

constraints on the value of the objective functions Pð ~GÞ and
Tð ~GÞ are given, the GA will explore the entire (infinite)
Pareto-optimal front, thereby spending quite a bit of time in
the regions which are of little or no physical importance
(where the trip rates or the heat load are too high to be
operationally useful). While such simulations are important
from a pedagogical standpoint for establishing the tradi-
tional single-objective optimization as asymptotes of the
multiobjective optimization presented here (see Fig. 2),
they are operationally inefficient. Instead, introducing addi-
tional constraints on the objective functions to the opti-
mization in Eq. (3) focuses the computations on the
operationally interesting ranges:

Subject to Pð ~GÞ ≤ Pmax;

Tð ~GÞ ≤ Tmax; ð9Þ

where Pmax and Tmax are specified at the beginning of the
GA simulation. These constraints were treated in the same
manner as the constraint on the total energy of the linac.
Imposing these new constraints forgoes information on the
extremes in favor of more relevant solutions emerging in
the center of the Pareto-optimal front.
To the extent investigated here, the simulation with these

extra constraints leads to an estimated Pareto front which is
about as accurate as that produced without the additional
constraints but using twice as many generations. Therefore,
additional constraints of the objective functions reduce the
computation time by about a half. This is illustrated
in Fig. 3.

2. Reusing solutions from previous GA simulations

Another approach to improving the efficiency of the
simulation is starting it with individuals produced by a
previous simulation. This is implemented by treating
individuals from a previously computed Pareto-optimal

FIG. 3. Effect on the quality of the Pareto-optimal front of constraining the objective functions as in Eq. (9). Both North linac
(left panel) and South linac (right panel) are constrained by Tmax ¼ 10 trips per hour and Pmax ¼ 1200 W.

FIG. 2. The Pareto-optimal front for the simultaneous optimi-
zation of the linac’s cooling cost and trip rate (multiobjective
optimization). Asymptotically, the solutions at the extremes of
the Pareto-optimal curve represent the single-objective minimi-
zation of the cooling cost (top left portion of the curve) and the
single-objective minimization of the trip rates (bottom right
portion of the curve). Solutions A and B are on the Pareto-
optimal front, while solution C is not because it is dominated by
solution A (A is within the rectangle defined by C’s coordinates).
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front as the initial generation of the new simulation, thereby
essentially continuing where the last simulation left off.
This restart feature is particularly useful during the

operation of the linac when one of the cavities needs to
be turned off, usually due to frequent tripping or otherwise
problematic behavior. With the problematic cavity turned
off, the energy must be redistributed across the remaining
cavities, which changes the optimization problem and thus
the Pareto-optimal front. Starting such a new simulation
from the solution of the full cavity problem (which one
would have at the beginning of linac operations) signifi-
cantly reduces the execution time. Figure 4 shows that the
Pareto-optimal front for the reduced problem started from
the Pareto-optimal front of the full cavity problem needs
about a half as many generations of the GA simulation
(and therefore half as long in terms of execution time) than
if it was started from a random sampling of the search
space. This is true for both one (left panel of Fig. 4) or two
cavities turned off (right panel of Fig. 4).

3. Optimization of the PISA code

In PISA implementation, variator and selector run
concurrently as two separate programs. They communicate
through text files, thereby significantly slowing down the
execution. In order to improve the efficiency of the PISA
GA code so that it can be used as a high-level, real-time
application for CEBAF operations, communication through
shared memory replaces text file communication between
the variator and selector. Shared memory may be simulta-
neously accessed by multiple programs with an intent to
provide efficient means of passing data among them and
avoid redundant copies. In a shared memory system all
processors share a single view of data and the communi-
cation between processors can be as fast as memory
accesses to a same location.

Replacing file communication by shared memory,
as well as implementing other minor optimizations
(streamlining function calls, restructuring the loops, etc.),
improved program execution time by a factor of about two
and a half. For instance, computing 1000 generations with
512 individuals on a 2.53 GHz Intel® Xeon® CPU with the
original implementation takes 245 seconds, while the
optimized version executes in 89 seconds.
Further optimizing the code by parallelizing it on clusters

of cores comprised of CPUs and graphical processing units
did not result in a marked improvement in performance
because the intrinsically parallelizable portions of the
code (i.e., objective function evaluation etc.) are not the
computational bottlenecks for this problem.

IV. RESULTS

With the optimized version of the PISAGA platform, the
constrained simultaneous cavity heat load and trip rates
minimizations for CEBAF North and South linacs are
independently run using 512 individuals evolved over a
maximum of 16000 generations. The results are given in
Figs. 5 and 6, which depict, for each linac, the Pareto-
optimal front (top left panels) and, for the three selected
solutions from the front, the conserved quantities from the
single-objective minimizations given in Eq. (8)—Gi=Qi
shown in red and Bi exp ½Aþ BiðGi − FiÞ� shown in blue—
just as in Fig. 1. The extreme points on the Pareto-
optimal front appear quite similar to the single-objective
optimization results shown in Fig. 1: for each linac,
compare solution A to the top row of Fig. 1 and solution
C to the bottom row. This, of course, is expected: even
though they are solutions of the multiobjective problem,
these extreme points so strongly favor one objective
over the other that they can be viewed as asymptoti-
cally equivalent to the solution of the single-objective

FIG. 4. Effect on turning off one cavity (left panel) or two cavities (right panel) and restarting the simulation from the previous solution
with all cavities on. The blue points denote the Pareto-optimal front produced by 8000 generations of the GA simulation started from a
random sampling of the search space, and the red points show the 4000 generations of the GA simulation restarted from the solution to
the full cavity problem with 4000 generations.
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optimization. It is evident that the solutions which
more strongly favor minimization of the heat load
will have the quantities Gi=Qi bunched around a constant
value and obversely for minimized of trip rates and
Bi exp ½Aþ BiðGi − FiÞ� values. A “goldilocks” solution,
one that balances the two objective functions (akin to
solution B), will have both quantities bunched around
constant values, but with larger scatter.
The extreme solutions A and C provide estimates to the

operational lower limit for the heat load (A) and the trip
rates (C). For the North linac, the minimum attainable heat
load is 1048 W, and the minimum trip rate is 0.41 per hour.
For the South linac, these are 988Wand 0.13 trips per hour.
It is easy to see then that the judicious solution B is within
4.5% of the minimum heat load for the North linac, and
2.9% for the South linac. It is reassuring that the GA-based
optimization allows us to reach the attainable minimum
within such a small margin.
Operationally, plots of the conserved quantities can serve

as diagnostic tools, since they can quickly identify the

cavities which are significantly away from the constant
value around which they should be bunched. These out-
lying cavities are noticeably displaced red dots in both
solutions A and B for the South linac (Fig. 6). These
cavities have low quality factor (Qi) values. It is interesting
to note that some of these “offending” outlying cavities
even when driven at the extreme values of their operational
ranges will not fall in line near the constant value.

A. Quantifying the improvement over earlier
implementations

By design, the multiobjective optimization presented
here is expected to be superior to the earlier single-objective
optimizations. Simply put, a multiobjective optimization
subsumes any single-objective optimization as its special
case, an asymptotic solution. The LEM tool currently in
operation at CEBAF does not take in consideration heat
load at all, and bases all of its optimization decisions on trip
rates of the cavities for which the empirical models exist.

FIG. 5. Pareto-optimal front for North linac obtained using the GA simulation with 512 individuals evolved for 16000 generations (top
left panel). Two of the three solutions marked are closely related to the asymptotic solutions obtained by single-objective minimization
of the heat load only (solution A) and trip rates only (solution C). Also shown is a solution from the Pareto-optimal front which has a trip
rate of exactly five (solution B). The remaining panels show the single-objective conserved quantities for solutions A, B, and C, as in
Fig. 1. Note the red outliers in the bottom right panel.
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A prototype of an improvement over the LEM code
presented in [12] used a GA-based method for a single-
objective optimization, in which the heat load was mini-
mized given a fixed trip rate enforced as a constraint. This
approach resulted in an appreciable improvement over the
existing LEM tool: it reduced the overall dynamic heat load
of the two linacs by about 10%, from 2689 W to 2435 W.

Figure 7 compares the Pareto-optimal front computed
using this GA-based multiobjective optimization with the
best results of the GA-based single-objective optimization
from [12], which had a number of trips per hour fixed at five.
A cursory point-to-point comparison reveals that new GA
implementation with 16000 generations and 512 individuals
yields the minimum heat load of 1097 W (1018 W) for the

FIG. 6. Same as Fig. 5, except for the South linac. Note the red outliers in solutions A and B.

FIG. 7. Pareto-optimal front computed using a GA-based multiobjective optimization with 16000 generations and 512 individuals
versus the single-objective GA-based optimization reported in [12].

BALŠA TERZIĆ et al. Phys. Rev. ST Accel. Beams 17, 101003 (2014)

101003-8



North linac (South linac), which is 15% (12%) better than the
best solution found in [12] (1285 W and 1150 W, respec-
tively). Furthermore, the multiobjective optimization here
not only provides a superior solution for the same trip rate as
the single solution found previously, but also yields an entire
set of feasible solutions for a full range of trip rates. This is
particularly helpful in operations when the Pareto-optimal
front can be used to estimate the marginal change in opera-
tional cost with the change in trip rates.
Combining the solutions for the North and South linacs

found using theGA-basedmultiobjective approach, the total
heat load at five trips per hour is 2115 W, which is 13%
(325 W) lower than the prototype GA-based solution from
[12], and 21% (579 W) lower than the operational point
computed by the LEM tool at which the run was executed.

B. Convergence of the Pareto-optimal front

The estimate of the Pareto-optimal front for each gen-
eration is a collection of the best nondominated solutions
from all the previous generations. Naturally, as the GA-
based optimization is evolved, newer generations will
produce new solutions which will dominate and push out
some older solutions from the Pareto-optimal front. This, in
turn, will lead to an evolution in the Pareto-optimal front
itself. At some point, after evolving the GA-based opti-
mization through enough generations, the Pareto-optimal
front is expected to converge to the optimal solution of the
problem, an approximation to the true Pareto-optimal front.
This true Pareto-optimal front, of course, is not known—the
best that one can hope to attain is a good approximation by
ascertaining that the Pareto-optimal fronts produced by the
GA-based optimization have converged. This is shown in
Fig. 8. It is difficult to resolve the differences between the
Pareto-optimal fronts after 8000 and 16000 generations,
which strongly indicates its convergence.
From the operational standpoint, the difference in

optimal solutions obtained after 1000 (2000) generations
and 16000 generations is about 0.5% (1%) of the total heat

load. Given that the amount of extra work needed to
“squeeze out” this final 0.5% (1%) of performance is
eightfold (sixteenfold)—since the code execution time
scales linearly with the number of generations—it is clear
that for operational purposes the accuracy of the simulation
with 1000 generations will suffice. The execution time of
our optimized version for 1000 generation is on the order of
90 seconds, close to the specifications of the machine
operations tool.
The computational load is further halved when con-

straints on the objective functions are implemented as
discussed in Sec. III B 1, leading to a solution within 1%
of the reported optimum within about 90 seconds of
execution time on a 2.53 GHz Intel® Xeon® CPU.

C. Sensitivity to measurement error

From the operational standpoint, it is desirable to
estimate how sensitive the optimal machine configuration
is to the errors in measurement of the cavity gradients Gi
or the cavity quality factor Qi. It is expected that the
measurement errors are on the order of 10% for the cavity
quality factor and about 5% for the gradient errors [3].
To simulate these errors 10000 different machine con-

figurations are generated with 10% (5%) random fluctua-
tions in the measured cavity quality factor Qi (measured
cavity gradients Gi). The solutions in the Pareto-optimal
front are recalculated using these newnoisy cavityQi andGi
and compared to the unadulterated GA-derived Pareto-
optimal front solutions. The resulting plot, shown in
Fig. 9, illustrates the effects of these measurements errors,
considered one at a time, on the Pareto-optimal front. Red
points denote the original Pareto-optimal front, blue points
the solutions that do not satisfy the energy constraint,
and green points the solutions that do satisfy the energy
constraint. It is evident that the errors in the cavity quality
factorQi only affect the heat load, since the trip ratemodel is
independent of this quantity, causing the horizontal smear
symmetric around the original, unperturbed Pareto-optimal

FIG. 8. Convergence of the Pareto-optimal fronts for the North (left) and South (right) linacs, as a function of the number of
generations in a GA simulation.
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front. The energy constraint is also independent of Qi, as
reflected in Eq. (3) and Fig. 9. For the errors in the measured
gradient Gi, the smearing around the unperturbed Pareto-
optimal is dominated with the solutions that violate the
energy constraint; the solutions which still obey the energy
condition all have slightly larger heat load consumption.

V. DISCUSSION AND SUMMARY

A GA-based optimization has been developed to simul-
taneously minimize the dynamic cavity heat load and trip
rates of the Jefferson Lab’s CEBAF linacs. A numerical
simulation using this approach is demonstrated to be
superior to the one-dimensional algorithm based on
Lagrange multipliers. At the same trip rate and overall
energy gain for the linac, the simulated dynamic heat load is
reduced by over 20%.While very important in its own right,
this study also serves as a proof of principle that GA-based
multiobjective, multidimensional optimization can result in

a substantial improvement in efficiency of other linac-based
machines, leading to significant savings in operations cost.
The study presented here is based on the numerical

simulation of the data of one of the old CEBAF runs, 2009
PVDIS experiment from its 6 GeV era. Its ultimate goal is
to pave the way toward a real-time operations tool for
the new 12 GeV CEBAF era experiments to replace the
existing LEM program. It represents a lion’s share of the
new operations tool which is currently being developed.
The main reason why our new, superior optimization

algorithm has not yet been incorporated into the regular
CEBAF operations is unavailability of the data for the new,
recently upgraded 12 GeV machine. As the data become
available, a numerical simulation with the new data and its
implementation on the CEBAF machine will be reported in
a separate publication.
From the implementation standpoint, extending the

formalism presented in this paper for the old 6 GeV era

FIG. 9. Sensitivity on the Pareto-optimal front to a 10% measurement error in the cavity quality factor Qi for the North (top left) and
South linacs (top right) and a 5% measurement error in gradientsGi for the North (bottom left) and South linacs (bottom right). The blue
(energy constraint not satisfied) and green (energy constraint satisfied) represent 10000 different machine configurations with
measurement errors artificially introduced. The (unperturbed) Pareto-optimal fronts (red) are the same as those in Figs. 5 and 6,
generated with 512 individuals evolved for 16000 generations.
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CEBAF run with 160 cavities in each linac to the 12 GeV
era CEBAF configuration with 200 cavities in each linac—
or to any other linac for that matter—is straightforward.
The dimensionality of the problem would change accom-
modating the varying number of cavities in a linac,
requiring only a minor modification of the simulation input
file. Integrating additional constraints, providing alternate
models for the heat load or the trip rates, introducing
dependence of the cavity quality factor Qi on cavity
gradient G, or other model-related enhancements would
require only minor modification of the source code.
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APPENDIX: CASTING A MULTIOBJECTIVE
OPTIMIZATON AS A SET OF

SINGLE-OBJECTIVE OPTIMIZATIONS

In practice, it is often the case that the two competing
objectives are linearly combined into one, thereby reducing
the problem from a multiobjective to a more easily tractable
single objective. Such a simplification collapses the set of
solutions of the multiobjective problem to a single point—a

tangential intersection of the coordinate system c1f1 þ
c2f2 ¼ const and the Pareto-optimal front of the full
multidimensional problem (see the left panel of Fig. 10).
Since solving a single-objective optimization problem is
considerably simpler and much better supported in terms of
solving techniques and corresponding literature, it seems
like a natural step forward to replace a multiobjective
problem with a set of single-objective optimization prob-
lems. Since each vector of parameters ðc1; c2Þ leads to a
single point on the Pareto-optimal front, N single-objective
simulations, each based on a different, mutually linearly
independent vector, approximates the front with N points
(as in the right panel of Fig. 10). Exact normalization of
ðc1; c2Þ vectors is not necessary, as long as they are linearly
independent. Without loss of generality, consider the
proposed scheme c1 þ c2 ¼ 1 and 0 ≤ c1; c2 ≤ 1 that
conveniently makes contact with the single-objective opti-
mizations of f1 alone (c1 ¼ 1, c2 ¼ 0) and f2 alone
(c1 ¼ 0, c2 ¼ 1). The results for the single-objective
simulation equivalents of one single multiobjective
CEBAF linac optimization are shown in the right panel
of Fig. 10. For the same number of generations, a single-
objective optimization of c1Pþ c2T for individual values
of ðc1; c2Þ provides a better estimate to the Pareto-optimal
front because it does not expend computational effort on
issues particular to having multiple objectives (expanding
the limits of the Pareto-optimal front). In this example, the
estimates of the Pareto-optimal front using a set of single-
objective optimizations with 1000 generations are about as
accurate as the multiobjective optimization with 4000
generations in estimating Pareto-optimal front.

FIG. 10. Left: Relationship between the Pareto-optimal front for the multiobjective optimization of two objective functions f1 and f2,
and the single-objective optimization of their linear combination c1f1 þ c2f2. Three different combinations of ðc1; c2Þ parameters are
shown in green, blue and red. Right: Comparison of the Pareto-optimal fronts from the multiobjective GA simulations (blue and green
points) with the results of the corresponding set of single-objective optimizations of c1Pþ c2T with varying values of ðc1; c2Þ
(red points). The simulation is for the CEBAF’s South linac.
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