4,003 research outputs found

    Classical Simulation of Quantum Fields II

    Full text link
    We consider the classical time evolution of a real scalar field in 2 dimensional Minkowski space with a λϕ4\lambda \phi^4 interaction. We compute the spatial and temporal two-point correlation functions and extract the renormalized mass of the interacting theory. We find our results are consistent with the one- and two-loop quantum computation. We also perform Monte Carlo simulations of the quantum theory and conclude that the classical scheme is able to produce more accurate results with a fraction of the CPU time.Comment: 16 pages, 8 figures, now matches published versio

    Construction of a topological charge on fuzzy S^2 x S^2 via Ginsparg-Wilson relation

    Full text link
    We construct a topological charge of gauge field configurations on a fuzzy S^2xS^2 by using a Dirac operator satisfying the Ginsparg-Wilson relation. The topological charge defined on the fuzzy S^2xS^2 can be interpreted as a noncommutative (or matrix) generalization of the 2nd Chern character on S^2xS^2. We further calculate the number of chiral zero modes of the Dirac operator in topologically nontrivial gauge configurations. Generalizations of our formulation to fuzzy (S^2)^k are also discussed.Comment: 30 pages, typo corrected, version published in Phys.Rev.

    A Class of Exact Solutions of the Faddeev Model

    Full text link
    A class of exact solutions of the Faddeev model, that is, the modified SO(3) nonlinear sigma model with the Skyrme term, is obtained in the four dimensional Minkowskian spacetime. The solutions are interpreted as the isothermal coordinates of a Riemannian surface. One special solution of the static vortex type is investigated numerically. It is also shown that the Faddeev model is equivalent to the mesonic sector of the SU(2) Skyrme model where the baryon number current vanishes.Comment: 20 pages, 7 figures, refs. adde

    Active site voltage clamp fluorometry of the sodium glucose cotransporter hSGLT1.

    Get PDF
    In the human sodium glucose cotransporter (hSGLT1) cycle, the protein undergoes conformational changes where the sugar-binding site alternatively faces the external and internal surfaces. Functional site-directed fluorometry was used to probe the conformational changes at the sugar-binding site. Residues (Y290, T287, H83, and N78) were mutated to cysteines. The mutants were expressed in Xenopus laevis oocytes and tagged with environmentally sensitive fluorescent rhodamines [e.g., tetramethylrhodamine (TMR)-thiols]. The fluorescence intensity was recorded as the mutants were driven into different conformations using voltage jumps. Sugar binding and transport by the fluorophore-tagged mutants were blocked, but Na+ binding and the voltage-dependent conformational transitions were unaffected. Structural models indicated that external Na+ binding opened a large aqueous vestibule (600 Ã…3) leading to the sugar-binding site. The fluorescence of TMR covalently linked to Y290C, T287C, and H83C decreased as the mutant proteins were driven from the inward to the outward open Na+-bound conformation. The time courses of fluorescence changes (milliseconds) were close to the SGLT1 capacitive charge movements. The quench in rhodamine fluorescence indicated that the environment of the chromophores became more polar with opening of the external gates as the protein transitioned from the inward to outward facing state. Structural analyses showed an increase in polar side chains and a decrease in hydrophobic side chains lining the vestibule, and this was reflected in solvation of the chromophore. The results demonstrate the opening and closing of external gates in real time, with the accompanying changes of polarity of the sugar vestibule

    A gate-defined silicon quantum dot molecule

    Full text link
    We report electron transport measurements of a silicon double dot formed in multi-gated metal-oxide-semiconductor structures with a 15-nm-thick silicon-on-insulator layer. Tunable tunnel coupling enables us to observe an excitation spectrum in weakly coupled dots and an energy level anticrossing in strongly coupled ones. Such a quantum dot molecule with both charge and energy quantization provides the essential prerequisite for future implementation of silicon-based quantum computations.Comment: 11pages,3figure

    Valley Polarization in Si(100) at Zero Magnetic Field

    Full text link
    The valley splitting, which lifts the degeneracy of the lowest two valley states in a SiO2_2/(100)Si/SiO2_2 quantum well is examined through transport measurements. We demonstrate that the valley splitting can be observed directly as a step in the conductance defining a boundary between valley-unpolarized and polarized regions. This persists to well above liquid helium temperature and shows no dependence on magnetic field, indicating that single-particle valley splitting and valley-polarization exist in (100) silicon even at zero magnetic field.Comment: Accpeted for publication in Phys. Rev. Let

    Measurement of the Noise Spectrum Using a Multiple-Pulse Sequence

    Full text link
    A method is proposed for obtaining the spectrum for noise that causes the phase decoherence of a qubit directly from experimentally available data. The method is based on a simple relationship between the spectrum and the coherence time of the qubit in the presence of a pi-pulse sequence. The relationship is found to hold for every system of a qubit interacting with the classical-noise, bosonic, and spin baths.Comment: 8 pages (4 pages + 4 pages Supplemental material), 1 figur
    • …
    corecore