1,668 research outputs found
Alien Registration- Gagnon, Alfred Hilaire A. (Lewiston, Androscoggin County)
https://digitalmaine.com/alien_docs/29804/thumbnail.jp
Effective synchronization of a class of Chua's chaotic systems using an exponential feedback coupling
In this work a robust exponential function based controller is designed to
synchronize effectively a given class of Chua's chaotic systems. The stability
of the drive-response systems framework is proved through the Lyapunov
stability theory. Computer simulations are given to illustrate and verify the
method.Comment: 12 pages, 18 figure
Trajectory Correction of the LHC Injection Transfer Lines TI 2 and TI 8
The LHC injection transfer lines TI 2 and TI 8 will transport very intense high-energy small-emittance proton beams over considerable distances. The relatively tight aperture requires a precise control of the trajectory. A detailed analysis of the trajectory excursions to be expected in the presence of various imperfections has been carried out. To stay within the given aperture a correction scheme is proposed in which two adjacent short straight sections out of every four are equipped with correctors. For both lines together this scheme requires 110 corrector elements. The maximum deflection per corrector remains below 65Ăťmrad. Corrector magnets and power supplies will be recuperated from LEP and adapted to their new function. The beam position monitors will use button-type electrodes which can also be recovered from LEP
Highly challenging balance program reduces fall rate in Parkinson disease
Published in final edited form as:
J Neurol Phys Ther. 2016 January ; 40(1): 24–30. doi:10.1097/NPT.0000000000000111BACKGROUND AND PURPOSE: There is a paucity of effective treatment options to reduce falls in Parkinson disease (PD). Although a variety of rehabilitative approaches have been shown to improve balance, evidence of a reduction in falls has been mixed. Prior balance trials suggest that programs with highly challenging exercises had superior outcomes. We investigated the effects of a theory-driven, progressive, highly challenging group exercise program on fall rate, balance, and fear of falling.
METHODS: Twenty-three subjects with PD participated in this randomized cross-over trial. Subjects were randomly allocated to 3 months of active balance exercises or usual care followed by the reverse. During the active condition, subjects participated in a progressive, highly challenging group exercise program twice weekly for 90 minutes. Outcomes included a change in fall rate over the 3-month active period and differences in balance (Mini-Balance Evaluation Systems Test [Mini-BESTest]), and fear of falling (Falls Efficacy Scale-International [FES-I]) between active and usual care conditions.
RESULTS: The effect of time on falls was significant (regression coefficient = -0.015 per day, P < 0.001). The estimated rate ratio comparing incidence rates at time points 1 month apart was 0.632 (95% confidence interval, 0.524-0.763). Thus, there was an estimated 37% decline in fall rate per month (95% confidence interval, 24%-48%). Improvements were also observed on the Mini-BESTest (P = 0.037) and FES-I (P = 0.059).
DISCUSSION AND CONCLUSIONS: The results of this study show that a theory-based, highly challenging, and progressive exercise program was effective in reducing falls, improving balance, and reducing fear of falling in PD.Video abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A120).
TRIAL REGISTRATION: ClinicalTrials.gov NCT02302144.This study was funded by the Boston Claude D. Pepper Older Americans Independence Center (NIH 5P30AG031679). Additional support was provided by the American Parkinson Disease Association (ADPA); ADPAMA Chapter. (NIH 5P30AG031679 - Boston Claude D. Pepper Older Americans Independence Center; American Parkinson Disease Association (ADPA); ADPAMA Chapter
Cognitive-behavioral therapy for anxiety in Parkinson's disease
Parkinson's disease (PD) is characterized by motor symptoms, but nonmotor symptoms also significantly impair daily functioning and reduce quality of life. Anxiety is prevalent and debilitating in PD, but remains understudied and undertreated. Much affective research in PD focuses on depression rather than anxiety, and as such, there are no evidence-based treatments for anxiety in this population. Cognitive-behavioral therapy (CBT) has shown promise for treating depression in PD and may be efficacious for anxiety. This exploratory study implemented a multiple-baseline single-case experimental design to evaluate the utility and feasibility of CBT for individuals with PD who also met criteria for a DSM-5 anxiety disorder ( n = 9). Participants were randomized to a 2-, 4-, or 6-week baseline phase, followed by 12 CBT sessions, and two post treatment assessments (immediately post treatment and 6-week follow-up). Multiple outcome measures of anxiety and depression were administered weekly during baseline and intervention. Weekly CBT sessions were conducted in-person ( n = 5) or via secure videoconferencing ( n = 4). At post treatment, seven of the nine participants showed significant reductions in anxiety and/or depression, with changes functionally related to treatment and most improvements maintained at 6-week follow-up. Effects of CBT on secondary outcomes varied across participants, with preliminary evidence for reduction in fear of falling. Adherence and retention were high, as were treatment satisfaction and acceptability. The findings of this pilot study provide preliminary evidence for the utility of CBT as a feasible treatment for anxiety and comorbid depressive symptoms in PD and highlight the potential of telehealth interventions for mood in this population.Accepted manuscrip
Beam transfer to and Injection into LHC
Transfer of 450 GeV protons from SPS to LHC will be carried out through two new beam transfer lines with a length of about 2.8-km per line. One beam will use the existing SPS west extraction in LSS6 from where a new line will lead to the LHC injection near intersection 2. A new fast extraction facility in SPS LSS4 is needed for the other beam line which will lead to LHC intersection 8. Economy considerations have led to the decision to use classical magnets of compact design. A lot of components will be recuperated from closed down installations. The injection systems consist of horizontally deflecting Lambertson type septum magnets and vertically deflecting kickers. A careful control of the trajectory and the preservation of the very small emittance during transfer and injection are of key importance. Construction for the transfer lines will start in 1998 to allow first injection tests in 2003. The report describes the layout and optics design and the required performance of the main components
Finite-time synchronization of tunnel diode based chaotic oscillators
This paper addresses the problem of finite-time synchronization of tunnel
diode based chaotic oscillators. After a brief investigation of its chaotic
dynamics, we propose an active adaptive feedback coupling which accomplishes
the synchronization of tunnel diode based chaotic systems with and without the
presence of delay(s), basing ourselves on Lyapunov and on Krasovskii-Lyapunov
stability theories. This feedback coupling could be applied to many other
chaotic systems. A finite horizon can be arbitrarily established by ensuring
that chaos synchronization is achieved at a pre-established time. An advantage
of the proposed feedback coupling is that it is simple and easy to implement.
Both mathematical investigations and numerical simulatioComment: 11 pages, 43 figure
Accurate measurement of a 96% input coupling into a cavity using polarization tomography
Pillar microcavities are excellent light-matter interfaces providing an
electromagnetic confinement in small mode volumes with high quality factors.
They also allow the efficient injection and extraction of photons, into and
from the cavity, with potentially near-unity input and output-coupling
efficiencies. Optimizing the input and output coupling is essential, in
particular, in the development of solid-state quantum networks where artificial
atoms are manipulated with single incoming photons. Here we propose a technique
to accurately measure input and output coupling efficiencies using polarization
tomography of the light reflected by the cavity. We use the residual
birefringence of pillar microcavities to distinguish the light coupled to the
cavity from the uncoupled light: the former participates to rotating the
polarization of the reflected beam, while the latter decreases the polarization
purity. Applying this technique to a micropillar cavity, we measure a output coupling and a input coupling with unprecedented
precision.Comment: 6 pages, 3 figure
Size dependence of solar X-ray flare properties
Non-thermal and thermal parameters of 85 solar flares of GOES class B1 to M6
(background subtracted classes A1 to M6) have been compared to each other. The
hard X-ray flux has been measured by RHESSI and a spectral fitting provided
flux and spectral index of the non-thermal emission, as well as temperature and
emission measure of the thermal emission. The soft X-ray flux was taken from
GOES measurements. We find a linear correlation in a double logarithmic plot
between the non-thermal flux and the spectral index. The higher the
acceleration rate of a flare, the harder the non-thermal electron distribution.
The relation is similar to the one found by a comparison of the same parameters
from several sub-peaks of a single flare. Thus small flares behave like small
subpeaks of large flares. Thermal flare properties such as temperature,
emission measure and the soft X-ray flux also correlate with peak non-thermal
flux. A large non-thermal peak flux entails an enhancement in both thermal
parameters. The relation between spectral index and the non-thermal flux is an
intrinsic feature of the particle acceleration process, depending on flare
size. This property affects the reported frequency distribution of flare
energies.Comment: Astronomy and Astrophysics, in pres
- …