59 research outputs found

    Electronic structures of CeRu2X2_2X_2 (XX = Si, Ge) in the paramagnetic phase studied by soft X-ray ARPES and hard X-ray photoelectron spectroscopy

    Full text link
    Soft and hard X-ray photoelectron spectroscopy (PES) has been performed for one of the heavy fermion system CeRu2_2Si2_2 and a 4f4f-localized ferromagnet CeRu2_2Ge2_2 in the paramagnetic phase. The three-dimensional band structures and Fermi surface (FS) shapes of CeRu2_2Si2_2 have been determined by soft X-ray hνh\nu-dependent angle resolved photoelectron spectroscopy (ARPES). The differences in the Fermi surface topology and the non-4f4f electronic structures between CeRu2_2Si2_2 and CeRu2_2Ge2_2 are qualitatively explained by the band-structure calculation for both 4f4f itinerant and localized models, respectively. The Ce valences in CeRu2X2_2X_2 (XX = Si, Ge) at 20 K are quantitatively estimated by the single impurity Anderson model calculation, where the Ce 3d hard X-ray core-level PES and Ce 3d X-ray absorption spectra have shown stronger hybridization and signature for the partial 4f4f contribution to the conduction electrons in CeRu2_2Si2_2.Comment: 8figure

    Prominent 5d-orbital contribution to the conduction electrons in gold

    Full text link
    We have examined the valence-band electronic structures of gold and silver in the same column in the periodic table with nominally filled d orbitals by means of a recently developed polarization-dependent hard x-ray photoemission. Contrary to a common expectation, it is found that the 5d-orbital electrons contribute prominently to the conduction electrons in gold while the conduction electrons in silver are to some extent free-electron-like with negligible 4d contribution, which could be related to a well-known fact that gold is more stable than silver in air. The 4d electron correlation effects are found to be essential for the conduction electron character in silver.Comment: 8 pages, 4 figures, to be appeared in New J. Phys

    Electron correlation in FeSe superconductor studied by bulk-sensitive photoemission spectroscopy

    Full text link
    We have investigated the electronic structures of recently discovered superconductor FeSe by soft-x-ray and hard-x-ray photoemission spectroscopy with high bulk sensitivity. The large Fe 3d spectral weight is located in the vicinity of the Fermi level (EF), which is demonstrated to be a coherent quasi-particle peak. Compared with the results of the band structure calculation with local-density approximation, Fe 3d band narrowing and the energy shift of the band toward EF are found, suggesting an importance of the electron correlation effect in FeSe. The self energy correction provides the larger mass enhancement value (Z^-1=3.6) than in Fe-As superconductors and enables us to separate a incoherent part from the spectrum. These features are quite consistent with the results of recent dynamical mean-field calculations, in which the incoherent part is attributed to the lower Hubbard band.Comment: 8 pages, 5 figures, 1 talbl

    Charge dynamics in strongly correlated one-dimensional Cu-O chain systems revealed by inelastic X-ray scattering

    Full text link
    We report on the Cu 1s resonant inelastic X-ray scattering (RIXS) of Cu-O one-dimensional (1D) strongly correlated insulator systems with contrasting atomic arrangements, namely edge-sharing CuGeO3 and corner-sharing Sr2CuO3. Owing to good statistics of the high-resolution RIXS data, so far unresolved fine structures are revealed. Detailed photon-energy and momentum dependence of the RIXS spectra in comparison with theoretical calculations has clarified the natures of the low-energy charge excitations and hybridization of the electronic states.Comment: 4 pages, 3 color figure

    Impact of the ground-state 4f4f symmetry for anisotropic cfcf-hybridization in the heavy fermion superconductor CeNi2_{2}Ge2_{2}

    Full text link
    We report the ground-state symmetry of the Ce 4f4f states in the heavy fermion superconductor CeNi2_{2}Ge2_{2}, yielding anisotropic cfcf-hybridization between the Ce 4f4f states and conducting electrons. By analyzing linear dichroism in soft x-ray absorption and core-level hard x-ray photoemission spectra, the 4f4f symmetry is determined as Σ\Sigma-type Γ7\Gamma_{7}, promoting predominant hybridization with the conducting electrons originating from the Ge site. The band structures probed by the soft x-ray angle-resolved photoemission indicates that the Ge 4p4p components contribute to the band renormalization through the anisotropic hybridization effects, suggesting that the control of the electronic structures of Ge orbital gives an impact to achieve the exotic phenomena in CeNi2_{2}Ge2_{2}
    • …
    corecore