5 research outputs found

    Biotic and abiotic factors shape the microbiota of wild-caught populations of the arbovirus vector Culicoides imicola

    Get PDF
    Biting midges of the genus Culicoides are known vectors of arboviruses affecting human and animal health. However, little is known about Culicoides imicola microbiota and its influence on this insect’s biology. In this study, the impact of biotic and abiotic factors on C. imicola microbiota was characterized using shotgun-metagenomic sequencing of whole-body DNA samples. Wild-caught C. imicola adult nulliparous females were sampled in two locations from Sicily, Italy. The climatic variables of temperature and soil moisture from both localities were recorded together with potential host bloodmeal sources. Shared core microbiome among C. imicola populations included Pseudomonas, Escherichia, Halomonas, Candidatus Zinderia, Propionibacterium, and Schizosaccharomyces. Specific and unique taxa were also found in C. imicola from each location, highlighting similarities and differences in microbiome composition between the two populations. DNA and protein identification showed differences in host preferences between the two populations, with Homo sapiens and Canis lupus familiaris L. being the preferred bloodmeal source in both locations. A principal component analysis showed that the combined effect of host preferences (H. sapiens) and local soil moisture factors shape the microbiome composition of wild-caught populations of C. imicola. These results contribute to characterizing the role of the microbiome in insect adaptation and its utility in predicting geographic expansion of Culicoides species with potential implications for the control of vector-borne diseases

    Antibacterial and antifungal activity of defensins from the Australian paralysis tick, Ixodes holocyclus

    No full text
    Tick innate immunity involves humoral and cellular responses. Among the humoral effector molecules in ticks are the defensins which are a family of small peptides with a conserved γ-core motif that is crucial for their antimicrobial activity. Defensin families have been identified in several hard and soft tick species. However, little is known about the presence and antimicrobial activity of defensins from the Australian paralysis tick Ixodes holocyclus. In this study the I. holocyclus transcriptome was searched for the presence of defensins. Unique and non-redundant defensin sequences were identified and designated as holosins 1 – 5. The antimicrobial activity of holosins 2 and 3 and of the predicted γ-cores of holosins 1–4 (HoloTickCores 1–4), was assessed using Gram-negative and Gram-positive bacteria as well as the fungus Fusarium graminearum and the yeast Candida albicans. All holosins had molecular features that are conserved in other tick defensins. Furthermore holosins 2 and 3 were very active against the Gram-positive bacteria Staphylococcus aureus and Listeria grayi. Holosins 2 and 3 were also active against F. graminearum and C. albicans and 5 μM of peptide abrogate the growth of these microorganisms. The activity of the synthetic γ-cores was lower than that of the mature defensins apart from HoloTickCore 2 which had activity comparable to mature holosin 2 against the Gram-negative bacterium Escherichia coli. This study reveals the presence of a multigene defensin family in I. holocyclus with wide antimicrobial activity

    Antibacterial and antifungal activity of defensins from the Australian paralysis tick, Ixodes holocyclus

    No full text
    International audienceTick innate immunity involves humoral and cellular responses. Among the humoral effector molecules in ticks are the defensins which are a family of small peptides with a conserved Îł-core motif that is crucial for their antimicrobial activity. Defensin families have been identified in several hard and soft tick species. However, little is known about the presence and antimicrobial activity of defensins from the Australian paralysis tick Ixodes holocyclus. In this study the I. holocyclus transcriptome was searched for the presence of defensins. Unique and non-redundant defensin sequences were identified and designated as holosins 1 - 5. The antimicrobial activity of holosins 2 and 3 and of the predicted Îł-cores of holosins 1-4 (HoloTickCores 1-4), was assessed using Gram-negative and Gram-positive bacteria as well as the fungus Fusarium graminearum and the yeast Candida albicans. All holosins had molecular features that are conserved in other tick defensins. Furthermore holosins 2 and 3 were very active against the Gram-positive bacteria Staphylococcus aureus and Listeria grayi. Holosins 2 and 3 were also active against F. graminearum and C. albicans and 5 ÎĽM of peptide abrogate the growth of these microorganisms. The activity of the synthetic Îł-cores was lower than that of the mature defensins apart from HoloTickCore 2 which had activity comparable to mature holosin 2 against the Gram-negative bacterium Escherichia coli. This study reveals the presence of a multigene defensin family in I. holocyclus with wide antimicrobial activity

    Antibacterial and antifungal activity of defensins from the Australian paralysis tick, Ixodes holocyclus

    No full text
    Tick innate immunity involves humoral and cellular responses. Among the humoral effector molecules in ticks are the defensins which are a family of small peptides with a conserved γ-core motif that is crucial for their antimicrobial activity. Defensin families have been identified in several hard and soft tick species. However, little is known about the presence and antimicrobial activity of defensins from the Australian paralysis tick Ixodes holocyclus. In this study the I. holocyclus transcriptome was searched for the presence of defensins. Unique and non-redundant defensin sequences were identified and designated as holosins 1 – 5. The antimicrobial activity of holosins 2 and 3 and of the predicted γ-cores of holosins 1–4 (HoloTickCores 1–4), was assessed using Gram-negative and Gram-positive bacteria as well as the fungus Fusarium graminearum and the yeast Candida albicans. All holosins had molecular features that are conserved in other tick defensins. Furthermore holosins 2 and 3 were very active against the Gram-positive bacteria Staphylococcus aureus and Listeria grayi. Holosins 2 and 3 were also active against F. graminearum and C. albicans and 5 μM of peptide abrogate the growth of these microorganisms. The activity of the synthetic γ-cores was lower than that of the mature defensins apart from HoloTickCore 2 which had activity comparable to mature holosin 2 against the Gram-negative bacterium Escherichia coli. This study reveals the presence of a multigene defensin family in I. holocyclus with wide antimicrobial activity
    corecore