10 research outputs found

    Dextran-Coated Magnetic Supports Modified with a Biomimetic Ligand for IgG Purification

    Get PDF
    The authors thank the financial support from Fundacao para a Ciencia e a Tecnologia through Grant PEst-C/EQB/LA0006/2011 and contracts no. PTDC/EBB-BIO/102163/2008, PTDC/EBB-BIO/098961/2008, PTDC/EBB-BIO/118317/2010, SFRH/BD/72650/2010 for V.L.D, and Santander Totta Bank - Universidade Nova de Lisboa for the Scientific Award 2009/2010. The authors are grateful to Dr. Abid Hussain and M. Telma Barroso (REQUIMTE, FCT-UNL, Portugal) for the preparation of the synthetic affinity ligands, to Lonza Biologics, U.K. (Dr. Richard Alldread), and the Animal Cell Technology Unit of ITQB-UNL/IBET (Dr. Paula M Alves and Dr. Ana Teixeira) for providing the cells and the culture bulks and to Mr. Filipe Cardoso and Prof. Paulo Freitas (INESC-MN, Lisbon, Portugal) for the help with the VSM measurements.Dextran-coated iron oxide magnetic particles modified with ligand 22/8, a protein A mimetic ligand, were prepared and assessed for IgG purification. Dextran was chosen as the agent to modify the surface of magnetic particles by presenting a negligible level of nonspecific adsorption. For the functionalization of the particles with the affinity ligand toward antibodies, three methods have been explored. The optimum coupling method yielded a theoretical maximum capacity for human IgG calculated as 568 ± 33 mg/g and a binding affinity constant of 7.7 × 10⁴ M⁻¹. Regeneration, recycle and reuse of particles was also highly successful for five cycles with minor loss of capacity. Moreover, this support presented specificity and effectiveness for IgG adsorption and elution at pH 11 directly from crude extracts with a final purity of 95% in the eluted fraction.proofpublishe

    The economics of inclusion body processing

    No full text
    Many recombinant proteins are often over-expressed in host cells, such as Escherichia coli, and are found as insoluble and inactive protein aggregates known as inclusion bodies (IBs). Recently, a novel process for IB extraction and solubilisation, based on chemical extraction, has been reported. While this method has the potential to radically intensify traditional IB processing, the process economics of the new technique have yet to be reported. This study focuses on the evaluation of process economics for several IB processing schemes based on chemical extraction and/or traditional techniques. Simulations and economic analysis were conducted at various processing conditions using granulocyte macrophage-colony stimulating factor, expressed as IBs in E. coli, as a model protein. In most cases, IB processing schemes based on chemical extraction having a shorter downstream cascade demonstrated a competitive economic edge over the conventional route, validating the new process as an economically more viable alternative for IB processing
    corecore