636 research outputs found
spectra in elementary cellular automata and fractal signals
We systematically compute the power spectra of the one-dimensional elementary
cellular automata introduced by Wolfram. On the one hand our analysis reveals
that one automaton displays spectra though considered as trivial, and on
the other hand that various automata classified as chaotic/complex display no
spectra. We model the results generalizing the recently investigated
Sierpinski signal to a class of fractal signals that are tailored to produce
spectra. From the widespread occurrence of (elementary) cellular
automata patterns in chemistry, physics and computer sciences, there are
various candidates to show spectra similar to our results.Comment: 4 pages (3 figs included
Parametric Optimization of Dye-Sensitized Solar Cells Using Far red Sensitizing Dye with Cobalt Electrolyte
A far-red sensitizing dye SQ-75 has been employed as a model sensitizer with Co(bpy)2+/3+ redox electrolytes to fabricate dye-sensitized solar cells (DSSCs) and optimize the various device parameters which influence the overall photoconversion efficiency (PCE). It has been found that the optimization of the TiO2 thickness, surface treatment with TiCl4, and an optimum amount of the chenodeoxycholic acid (CDCA) as coadsorber are necessary to attain the overall improved PCE. TiCl4 surface treatment on both FTO and TiO2 has been found to outperform as compared to their untreated counterparts owing to the suppression of the charge recombination. DSSCs with an optimized TiO2 thickness of 6 μm and CDCA concentration of 4 mM have exhibited best performance due to enhanced photon harvesting and reduced dye aggregation, respectively.12th International Conference on Nanomolecular Electronics (ICNME-2016), December 14-16, 2016, Kobe International Conference Center, Kobe, Japa
Statistical Communication Theory
Contains research objectives and reports on four research projects
Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM
We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.12th International Conference on Nanomolecular Electronics (ICNME-2016), December 14-16, 2016, Kobe International Conference Center, Kobe, Japa
Piper Ornatum and Piper Betle as Organic Dyes for TiO2 and SnO2 Dye Sensitized Solar Cells
Dye sensitized solar cell (DSSC) mimics the principle of natural photosynthesis are now currently investigated due to low manufacturing cost as compared to silicon based solar cells. In this report, we utilized Piper ornatum (PO) and Piper betle (PB) as sensitizer to fabricate low cost DSSCs. We compared the photovoltaic performance of both sensitizers with Titanium dioxide (TiO2) and Tin dioxide (SnO2) semiconductors. The results show that PO and PB dyes have higher Short circuit current (Jsc) when applied in SnO2 compared to standard TiO2 photo-anode film even though the Open circuit voltage (Voc) was hampered on SnO2 device. In conclusion, from the result, higher electron injections can be achieved by choosing appropriate semiconductors with band gap that match with dyes energy level as one of strategy for further low cost solar cell.The 2nd International Conference on Science (ICOS), 2–3 November 2017, Makassar, Indonesi
Sierpinski signal generates spectra
We investigate the row sum of the binary pattern generated by the Sierpinski
automaton: Interpreted as a time series we calculate the power spectrum of this
Sierpinski signal analytically and obtain a unique rugged fine structure with
underlying power law decay with an exponent of approximately 1.15. Despite the
simplicity of the model, it can serve as a model for spectra in a
certain class of experimental and natural systems like catalytic reactions and
mollusc patterns.Comment: 4 pages (4 figs included). Accepted for publication in Physical
Review
Scalable Extraction of Training Data from (Production) Language Models
This paper studies extractable memorization: training data that an adversary
can efficiently extract by querying a machine learning model without prior
knowledge of the training dataset. We show an adversary can extract gigabytes
of training data from open-source language models like Pythia or GPT-Neo,
semi-open models like LLaMA or Falcon, and closed models like ChatGPT. Existing
techniques from the literature suffice to attack unaligned models; in order to
attack the aligned ChatGPT, we develop a new divergence attack that causes the
model to diverge from its chatbot-style generations and emit training data at a
rate 150x higher than when behaving properly. Our methods show practical
attacks can recover far more data than previously thought, and reveal that
current alignment techniques do not eliminate memorization
- …