2,017 research outputs found
Generalized Fokker-Planck equation, Brownian motion, and ergodicity
Microscopic theory of Brownian motion of a particle of mass in a bath of
molecules of mass is considered beyond lowest order in the mass ratio
. The corresponding Langevin equation contains nonlinear corrections to
the dissipative force, and the generalized Fokker-Planck equation involves
derivatives of order higher than two. These equations are derived from first
principles with coefficients expressed in terms of correlation functions of
microscopic force on the particle. The coefficients are evaluated explicitly
for a generalized Rayleigh model with a finite time of molecule-particle
collisions. In the limit of a low-density bath, we recover the results obtained
previously for a model with instantaneous binary collisions. In general case,
the equations contain additional corrections, quadratic in bath density,
originating from a finite collision time. These corrections survive to order
and are found to make the stationary distribution non-Maxwellian.
Some relevant numerical simulations are also presented
A model for alignment between microscopic rods and vorticity
Numerical simulations show that microscopic rod-like bodies suspended in a
turbulent flow tend to align with the vorticity vector, rather than with the
dominant eignevector of the strain-rate tensor. This paper investigates an
analytically solvable limit of a model for alignment in a random velocity field
with isotropic statistics. The vorticity varies very slowly and the isotropic
random flow is equivalent to a pure strain with statistics which are
axisymmetric about the direction of the vorticity. We analyse the alignment in
a weakly fluctuating uniaxial strain field, as a function of the product of the
strain relaxation time and the angular velocity about
the vorticity axis. We find that when , the rods are
predominantly either perpendicular or parallel to the vorticity
Stationary distributions of sums of marginally chaotic variables as renormalization group fixed points
We determine the limit distributions of sums of deterministic chaotic
variables in unimodal maps assisted by a novel renormalization group (RG)
framework associated to the operation of increment of summands and rescaling.
In this framework the difference in control parameter from its value at the
transition to chaos is the only relevant variable, the trivial fixed point is
the Gaussian distribution and a nontrivial fixed point is a multifractal
distribution with features similar to those of the Feigenbaum attractor. The
crossover between the two fixed points is discussed and the flow toward the
trivial fixed point is seen to consist of a sequence of chaotic band mergers.Comment: 7 pages, 2 figures, to appear in Journal of Physics: Conf.Series
(IOP, 2010
Stochastic oscillations in models of epidemics on a network of cities
We carry out an analytic investigation of stochastic oscillations in a
susceptible-infected-recovered model of disease spread on a network of
cities. In the model a fraction of individuals from city commute
to city , where they may infect, or be infected by, others. Starting from a
continuous time Markov description of the model the deterministic equations,
which are valid in the limit when the population of each city is infinite, are
recovered. The stochastic fluctuations about the fixed point of these equations
are derived by use of the van Kampen system-size expansion. The fixed point
structure of the deterministic equations is remarkably simple: a unique
non-trivial fixed point always exists and has the feature that the fraction of
susceptible, infected and recovered individuals is the same for each city
irrespective of its size. We find that the stochastic fluctuations have an
analogously simple dynamics: all oscillations have a single frequency, equal to
that found in the one city case. We interpret this phenomenon in terms of the
properties of the spectrum of the matrix of the linear approximation of the
deterministic equations at the fixed point.Comment: 13 pages, 7 figure
A Paradox of State-Dependent Diffusion and How to Resolve It
Consider a particle diffusing in a confined volume which is divided into two
equal regions. In one region the diffusion coefficient is twice the value of
the diffusion coefficient in the other region. Will the particle spend equal
proportions of time in the two regions in the long term? Statistical mechanics
would suggest yes, since the number of accessible states in each region is
presumably the same. However, another line of reasoning suggests that the
particle should spend less time in the region with faster diffusion, since it
will exit that region more quickly. We demonstrate with a simple microscopic
model system that both predictions are consistent with the information given.
Thus, specifying the diffusion rate as a function of position is not enough to
characterize the behaviour of a system, even assuming the absence of external
forces. We propose an alternative framework for modelling diffusive dynamics in
which both the diffusion rate and equilibrium probability density for the
position of the particle are specified by the modeller. We introduce a
numerical method for simulating dynamics in our framework that samples from the
equilibrium probability density exactly and is suitable for discontinuous
diffusion coefficients.Comment: 21 pages, 6 figures. Second round of revisions. This is the version
that will appear in Proc Roy So
Casimir effect with rough metallic mirrors
We calculate the second order roughness correction to the Casimir energy for
two parallel metallic mirrors. Our results may also be applied to the
plane-sphere geometry used in most experiments. The metallic mirrors are
described by the plasma model, with arbitrary values for the plasma wavelength,
the mirror separation and the roughness correlation length, with the roughness
amplitude remaining the smallest length scale for perturbation theory to hold.
From the analysis of the intracavity field fluctuations, we obtain the
Casimir energy correction in terms of generalized reflection operators, which
account for diffraction and polarization coupling in the scattering by the
rough surfaces. We present simple analytical expressions for several limiting
cases, as well as numerical results that allow for a reliable calculation of
the roughness correction in real experiments. The correction is larger than the
result of the Proximity Force Approximation, which is obtained from our theory
as a limiting case (very smooth surfaces).Comment: 16 page
Thermodynamics of quantum jump trajectories in systems driven by classical fluctuations
The large-deviation method can be used to study the measurement trajectories
of open quantum systems. For optical arrangements this formalism allows to
describe the long time properties of the (non-equilibrium) photon counting
statistics in the context of a (equilibrium) thermodynamic approach defined in
terms of dynamical phases and transitions between them in the trajectory space
[J.P. Garrahan and I. Lesanovsky, Phys. Rev. Lett. 104, 160601 (2010)]. In this
paper, we study the thermodynamic approach for fluorescent systems coupled to
complex reservoirs that induce stochastic fluctuations in their dynamical
parameters. In a fast modulation limit the thermodynamics corresponds to that
of a Markovian two-level system. In a slow modulation limit, the thermodynamic
properties are equivalent to those of a finite system that in an infinite-size
limit is characterized by a first-order transition. The dynamical phases
correspond to different intensity regimes, while the size of the system is
measured by the transition rate of the bath fluctuations. As a function of a
dimensionless intensive variable, the first and second derivative of the
thermodynamic potential develop an abrupt change and a narrow peak
respectively. Their scaling properties are consistent with a double-Gaussian
probability distribution of the associated extensive variable.Comment: 12 pages, 3 figure
Decoherence of a Measure of Entanglement
We demonstrate by an explicit model calculation that the decay of
entanglement of two two-state systems (two qubits) is governed by the product
of the factors that measure the degree of decoherence of each of the qubits,
subject to independent sources of quantum noise. This demonstrates an important
physical property that separated open quantum systems can evolve quantum
mechanically on time scales larger than the times for which they remain
entangled.Comment: 4 pages, 1 figur
- …