31 research outputs found

    A phase I study of nolatrexed dihydrochloride in children with advanced cancer. A United Kingdom Children's Cancer Study Group Investigation

    Get PDF
    A phase I study of nolatrexed, administered as a continuous 5 day intravenous infusion every 28 days, has been undertaken for children with advanced malignancy. 16 patients were treated at 3 dose levels; 420, 640 and 768 mg/m2 24 h−1. 8 patients were evaluable for toxicity. In the 6 patients treated at 768 mg/m2 24 h−1, dose-limiting oral mucositis and myelosuppression were observed. Plasma nolatrexed concentrations and systemic exposure, measured in 14 patients, were dose related, with mean AUC values of 36 mg−1 ml−1 min−1, 50 mg ml−1 min−1 and 80 mg ml−1 min−1at the 3 dose levels studied. Whereas no toxicity was encountered if the nolatrexed AUC was <45 mg ml−1 min−1, Grade 3 or 4 toxicity was observed with AUC values of >60 mg ml−1 min−1. Elevated plasma deoxyuridine levels, measured as a surrogate marker of thymidylate synthase inhibition, were seen at all of the dose levels studied. One patient with a spinal primitive neuroectodermal tumour had stable disease for 11 cycles of therapy, and in two patients with acute lymphoblastic leukaemia a short-lived 50% reduction in peripheral lymphoblast counts was observed. Nolatrexed can be safely administered to children with cancer, and there is evidence of therapeutic activity as well as antiproliferative toxicity. Phase II studies of nolatrexed in children at the maximum tolerated dose of 640 mg/m2 24 h−1are warranted. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver

    Get PDF
    Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application
    corecore