31 research outputs found

    Thermal Adaptation of Dihydrofolate Reductase from the Moderate ThermophileGeobacillus stearothermophilus

    Get PDF
    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is 30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C

    Fast intramolecular dynamics of triphenyl phosphite investigated by

    No full text
    The first analysis of rapid intramolecular motions of triphenyl phosphite by 2H NMR is presented. The fragile slowing down of the primary relaxation is followed by a solid-echo method. The occurrence of a fast reorientation of the phenyl side groups is demonstrated in the supercooled liquid state, identified as a two-fold flip on the basis of simple lineshape simulations. Coexistence of both static and motionally averaged components in “two phase” spectra indicate a broad distribution of correlation times for this relaxation. This dynamical behavior is shown to persist in the glacial phase
    corecore